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ABSTRACT
The impact and significance of a scientific publication is measured
mostly by the number of citations it accumulates over the years.
Early prediction of the citation profile of research articles is a sig-
nificant as well as challenging problem. In this paper, we argue that
features gathered from the citation contexts of the research papers
can be very relevant for citation prediction. Analyzing a massive
dataset of nearly 1.5 million computer science articles and more
than 26 million citation contexts, we show that average countX
(number of times a paper is cited within the same article) and aver-
age citeWords (number of words within the citation context) dis-
criminate between various citation ranges as well as citation cat-
egories. We use these features in a stratified learning framework
for future citation prediction. Experimental results show that the
proposed model significantly outperforms the existing citation pre-
diction models by a margin of 8-10% on an average under various
experimental settings. Specifically, the features derived from the
citation context help in predicting long-term citation behavior.

Categories and Subject Descriptors
H.2.8 [Database Application]: Data mining
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1. INTRODUCTION
Citation count of a publication is among the most commonly ac-

cepted metric by the research community for evaluating the impact
and quality of a research article. Citation count refers to the number
of citations received by an article within a specified time-period [2].
Highly-cited works remain as one of the most important criteria
for various organization (e.g. companies, universities and govern-
ments) to identify the best talents, especially at their initial stages.
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An early estimate would help in identification of promising articles
that could accelerate research and dissemination of new knowledge.
This has motivated the interest in the field of future citation predic-
tion [17, 19].

Prediction of future citation counts, however, is difficult because
of the nature and dynamics of citations [8, 10]. The citation ranges
for the papers published by the same authors or the same venues
show a lot of variation. The same can be said about the field of the
papers as well. A very recent study [7] has shown that all the scien-
tific papers do not follow the same trajectory and found 6 different
citation patterns.

The existing works have used various venue and author centric
features, along with the citation information from the initial years
for the task of citation prediction. In this paper, we argue that the
features extracted from the citation contexts can be extremely help-
ful for the future prediction. Citation context refers to textual de-
scriptions of a given scientific paper found in other papers in the
document collection which cites it [1]. A citation context is, in
principle, a set of sentences where a paper is referred to. The in-
tuition behind using the citation context features comes from the
hypothesis that citation contexts reflect the opinion of the scientific
community about the particular work. We show that even using
some very simplistic features extracted from the citation context
can boost the performance of a citation prediction system signifi-
cantly.

Towards this objective, we use a massive dataset consisting of
more than 26 million citation contexts for nearly 1.5 million re-
search papers in the computer science domain, crawled from Mi-
crosoft Academic Search (MAS)1. We extract two features from
the citation contexts – average countX (number of times a paper
is cited within the same article, averaged over all the citing pa-
pers) and average citeWords (number of words within the citation
context, averaged over all the citing papers). We show that these
features are quite discriminative and exhibit different trends not
only for different citation ranges but also for the citation categories
identified in [7]. We then append these features along with various
other features in an earlier framework based on stratified learning
[6]. Experimental results show that addition of these two features
gives an R2-correlation of 0.84, 0.81 and 0.78 towards predicting
the citation count at 5, 7 and 9 years after publication, improving
the prediction accuracy by 8-10% on an average over the nearest
baseline. Specifically, these features help in predicting the long
term citation behavior of the research papers. We would like to
stress here that this study brings forth the tremendous potential of

1http://academic.research.microsoft.com/



the content of a scientific article in predicting future citation counts;
the huge success of only two very simple content related features
proposed here makes the authors believe that deeper analysis of the
content can lead to further significant improvements in the related
areas of research.

The rest of the paper has been organized as follows. We discuss
the related previous works in section 2. Section 3 describes the
citation context dataset used for this experimental study. The two
citation context features utilized for our study have been described
in section 4. The citation prediction model has been described in
section 5. The experiments to evaluate our system under different
settings have been reported in section 6 along with a detailed com-
parison and feature analysis. Finally, conclusions and future works
have been presented in section 7.

2. RELATED WORK
In recent years, several researchers have investigated the prob-

lem of future citation count prediction [17, 19, 20, 21]. Most of
the past works have proposed a set of features and used a super-
vised learning model to predict the citation count at a later time
point. Many works use only the information available at the time
of publication to predict future citation count, while other works
also use information available from the initial years after publica-
tion. For instance, Fu and Aliferis [9] predict citation count with the
information available at the time of publication. They incorporate
features like number of authors, number of articles for the first au-
thor, number of citations for the first author, number of affiliations,
the journal impact factor, title, abstract, MeSH terms2 etc. Support
Vector Machines (SVM) have been used to predict citation count
after 10 years of publication. Similarly, Livne et al. [14] use fea-
tures like authors, author institutions, venue and references to train
a Support vector regression (SVR). They observe that venue and
the references are the most significant features for citation count
prediction.

Callaham et al. [16] use decision trees to predict citation counts
of 204 publications from emergency medicine specialty meeting.
They use features like impact factor of journal, research design,
number of subjects, rated subjectively for scientific quality, news-
worthiness etc. Kulkarni et al. [11] use linear regression and achieve
an R2 of 0.2 for the prediction of citation count for five year ahead
window using 328 medical articles. They use features like journal
name, month of publication, study design, clinical category of the
article etc.

Brody et al. [3] use information after the publication to fore-
cast citation count. Download data within the first 6 months after
publication is used as a predictive feature. Similarly, Lokker et
al. [15] use features related to the article and journal, like number
of authors, pages, references etc. for the prediction task. Castillo
et al. [5] use the number of citations, authors’ reputation and the
source of paper citations as the predictive features.

Liangyue et al. [13] propose a joint predictive model to forecast
the long-term scientific impact problem, formulated as a regular-
ized optimization problem. Their work addresses four key algo-
rithmic challenges, including the scholarly feature design, the non-
linearity, the domain-heterogeneity and dynamics. Further, they
propose a fast online update algorithm to adapt joint predictive
model efficiently over time. They observe that citation history is
a strong indicator of long-term impact and using additional con-
textual or content features brings little marginal benefits in terms of
prediction performance. An analysis on 463,348 papers from Phys-
ical Review (PR) corpus suggests high heterogeneity in the citation

2http://www.nlm.nih.gov/mesh/

histories [18]. They present three fundamental mechanisms that
drive citation history, namely preferential attachment, aging and
novelty, and importance of a discovery (fitness). Combining these
mechanisms allows to collapse the citation histories of papers from
different journals and disciplines into a single curve, indicating that
all papers tend to follow a similar universal temporal pattern.

Yan et al. present two similar works on citation prediction prob-
lem [19, 20]. They have introduced features covering venue pres-
tige, content novelty and diversity, and authors’ influence and ac-
tivity. Pobiedina and Ichise [17] introduce a new feature GERscore
(Graph Evolution Rule score), based on frequent graph pattern min-
ing techniques, for citation prediction. Yu et al. [21] propose a
new data structure namely discriminative term buckets to capture
both document similarity and potential citation relation. They also
propose metapath based feature space to interpret structural infor-
mation in citation prediction. Along with these novel ideas, they
present an extensive analysis on differences between citation pre-
diction problem and the related work, e.g., traditional link predic-
tion solution.

One of the previous works [6] suggests that stratified learning
approach leads to good prediction accuracy. They observe that
there exist six different patterns of citation profiles of research pa-
pers based on the number and position of peaks in the citation pro-
file. Further, a two-stage prediction model was proposed, which
maps a query paper into one of the six categories in the first stage,
and then in the second stage, a regression module is run only on the
subpopulation corresponding to that category to predict the future
citation count of the query paper. They achieve a superior perfor-
mance just by using the features at the time of publication. Mo-
tivated by this study, we also use a stratified learning framework
for citation prediction. However, since the prime objective of this
work is to show the utility of citation context features which are
available only after publication, we utilize the citation context fea-
tures derived from the first two years after publication along with
the publication time features to improve the prediction accuracy.

To the best of our knowledge, this is the first work that attempts
to use citation context based features in the citation prediction prob-
lem. We use a massive dataset of more than 26 million citation
contexts from computer science research articles towards this goal.
The next section describes the dataset used in this study.

3. DATASET
In this paper, we use two computer science datasets, both crawled

from Microsoft Academic Search (MAS)3. First dataset (biblio-
graphic dataset) consists of bibliographic information of papers,
the title of the paper, a unique index for the paper, its author(s),
the affiliation of the author(s), the year of publication, the publi-
cation venue, references, citation contexts, the related field(s)4 of
the paper, the abstract and the keywords of the papers [6]. Second
dataset (citation context dataset) consists of more than 26 million
citation contexts pre-processed and annotated with cited and citing
paper information.

Table 1 details various statistics for both the datasets.
Definition I: We will say that paper P cites paper C, if paper P

refers to paper C in the text. P is termed as citing paper while C
is termed as cited paper. P can refer to C at many places in the
text. In our present work, we only consider the sentence as citation
context where the reference to the paper is explicitly present.

3http://academic.research.microsoft.com
4Note that the different sub-branches like Algorithms, AI, Operat-
ing Systems etc. constitute different “fields” of computer science
domain.



For an example, Chakraborty et al. [6] cites Yan et al. [19] as
Recently, Yan et al. conduct two similar experiments [25, 26],

to study features covering venue prestige, content novelty and di-
versity and authors’ influence and activity. They also account for
the temporal dynamics by taking a recent version of each feature
calculated on a limited time window. To the best of our knowledge,
this is the latest and the most accurate future citation count pre-
diction model, and therefore serves as the baseline system in this
paper. We conduct an extended examination of all these factors re-
lated to citation counts, with many new features added.

Although, the above context consists of four sentences, we only
consider the first sentence as the citation context since it explicitly
refers to Yan et al. [19].

Definition II: countX for a cited paperC with respect to a citing
paper P is defined as the number of citation contexts, when a paper
P cites paper C. Citation context count for a paper C denotes the
sum of countX from all the citations for C.

Table 1: General information about the datasets

D
at
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et

I

Year range 1960-2010
Number of computer science fields 21
Number of publications 1,359,338
Number of authors 138,923
Avg. number of papers per author 5.43
Avg. number of authors per paper 2.40

D
at

as
et

II Number of citation contexts 26,197,440
Avg. number of citation contexts per paper 19.27
Avg. number of words per citation context 26
Number of papers having at least one citation context 1,279,104

Each paper has a specific citation context count. Figure 1 shows
the distribution of papers having specific citation context count in
our dataset. Long tail depicts that many papers have less number
of citation context count while a small number of papers have high
citation context count.

Figure 1: Distribution of citation context count in our dataset

Definition III: citeWords for a cited paper C with respect to a
citing paper P is defined as the number of words in the citation
context, when a paper P cites paper C. If multiple papers are cited
within the same citation context, the number of words are equally
divided among all the cited papers. If a paper is cited multiple times
within the same paper, citeWords is computed by summing over the
words in all the citation contexts.

In the next section, we discuss in detail how the average values
of countX and citeWords behave for papers with various citation
ranges.

4. AVERAGE COUNTX AND CITEWORDS
After identifying countX and citeWords as two features from the

citation contexts, we study in detail as to whether these features

are discriminative with respect to the number of citations. To nor-
malize with respect to various ranges of citations, we only used the
average values of countX and citeWords for a publication in each
year starting from its publication.

To give a working example as to how these features are com-
puted, Table 2 presents citation contexts for paper P titled as “On
Relaxed Dynamic Programming in Switching Systems”, published
in 2005. The first column gives the citer_ids, which refer to MAS
identifier for the papers citing paper P. Publication year of the cit-
ing paper is shown in column 2. Column 3 gives the exact citation
context(s) in the citing paper for paper P. Below, we describe as to
how the average countX and average citeWords features are com-
puted for P over the years.

4.1 Average countX
For a citation edge from paper Q to paper P (i.e., Q citing P ),

countX denotes the number of times paper P is cited in paperQ. A
high value of countX implies that paper P is cited multiple times by
paper Q and thus, P might be quite relevant for paper Q. Possibly,
Q has cited P for its different aspects. Our hypothesis is that if we
consider all the papers citing paper P and find the average value of
countX for P , it may serve as a very strong feature to measure the
importance of P .

Let us assume that the papers Q1, Q2, . . . , Qn are citing paper
P for N1, N2, . . . , Nn times respectively in the tth year after pub-
lication of P . We define the average countX metric for paper P for
the tth year as

average countX(P, t) =

∑n
j=1Nj

n
(1)

Using the example in Table 2, average countX value for paper P
for the first year after publication (year 2006) can be calculated as:
average countX(P, 1) = 2+1

2
= 1.5. This is because there are

two citing papers in year 2006, one of which cites P twice within
the same paper while the other cites it only once.

4.2 Average citeWords
For a citation edge from paper Q to paper P , citeWords denotes

the number of words in the citation context(s), where P has been
referred to. Since more than one paper might be cited within the
same citation context, number of words are divided among all the
cited papers. Similar to countX, a high value of citeWords implies
that paper P has been discussed in more details by paper Q and
therefore, paper P might be relevant for paper Q. Dividing by the
number of papers cited within the citation context takes care of the
fact that the words in citation contexts have been used to describe
multiple papers. Similar to countX, our hypothesis is that finding
the average number of words that other papers use to describe P
could be indicative of the importance of paper P .

Let us assume that paper P is cited by another paper Qi in m
different citation contexts, S1, . . . , Sm. For this citation edge, cite-
Words is computed as

citeWords(P,Qi) =

m∑
i=1

AW (Si, P,Qi) (2)

whereAW (Si, P,Qi) denotes the average number of words used
in sentence Si to describe P . In general, if k ≥ 1 papers are cited
within the sentence Si, the average words for each of these k papers
(including P ) is given by:

AW (S, P,Qi) =
Len(S)

k
(3)



where Len(S) denotes the length of a sentence S and is simply
computed by counting the number of words appearing in it. Now,
assume that the papers Q1, Q2, . . . , Qn are citing paper P in the
tth year after publication of P . We define the average citeWords
metric for paper P for the tth year as:

Average citeWords(P, t) =

∑n
j=1 citeWords(P,Qi)

n
(4)

Using Table 2, average citeWords value for paper P for the third
year after publication (year 2008) can be calculated as:

(citeWords(P, 6413388) + citeWords(P, 5052733))/2
To compute citeWords(P, 5052733), we see that paper 5052733

cites P in one citation context when a total of two papers are cited.
Thus
citeWords(P, 5052733) = 11

2
= 5.5, where 11 is the length

of the citation context.
Similarly, paper 6413388 cites paper P twice but in both the

citation contexts, two papers are cited. Therefore,

citeWords(P, 6413388) =
25

2
+

16

2
= 20.5

Thus, Average citeWords(P, 3) = 20.5+5.5
2

= 13.

4.3 Correlation between citation counts and
citation content features over the years

We investigate whether the average countX and average cite-
Words values over the years are correlated with the number of ci-
tations a paper receives. We reiterate that both average countX and
average citeWords are normalized with respect to the number of ci-
tations received by the paper. We divide the set of papers in our
dataset into 6 buckets based on the following criterion on the num-
ber of citations.

Bucket 1: Top 0.1% papers – citations 389-7859

Bucket 2: Top 0.1 - 1% papers – citations 95-389

Bucket 3: Top 1 - 5% papers – citations 29-95

Bucket 4: Top 5 - 10% papers – citations 16-29

Bucket 5: Top 10 - 25% papers – citations 6-16

Bucket 6: Rest of the papers – citations 0-6

For each of the Citation buckets, we plot the temporal profile for
the average countX values, averaged for all the papers within that
bucket, in Figure 2. The X−axis denotes the year after publication
for the paper, ranging from 0 (same year as publication) to 10 (10th

year after publication). While averaging for a citation bucket for
a particular year, we consider only those papers which have non-
zero citations in that year. Minimum value of countX can be 1
for any citation edge. Interestingly, as per our hypothesis, various
citation ranges show differences in terms of the average countX
values. Some important observations from Figure 2 are:

1. There is an increase in value of countX in initial years irre-
spective of the citation bucket, and it further decreases con-
tinuously over the years. A slight increase is observed for the
10th year after publication.

2. Highly cited papers are cited more number of times in a sin-
gle paper.

We clearly see a correlation between the number of citations and
the average countX profiles of the papers. Further, we investigate
whether the countX values can discriminate between the 6 citation
categories identified in [7]. Accordingly, we divided the set of pa-
pers into 6 categories mentioned in [7]. For readability, the six
categories are described below:

(i) PeakInit: Papers whose citation count peaks within 5 years
of publication followed by an exponential decay.

(ii) PeakMul: Papers having multiple peaks in different time
periods of the citation history.

(iii) PeakLate: Papers having very few citations at the begin-
ning and then a single peak after at least 5 years of the publication
followed by an exponential decay in citation count.

(iv) MonDec: Papers whose citation count peaks in the immedi-
ate next year of the publication followed by a monotonic decrease
in the number of citations.

(v) MonIncr: Papers having a monotonic increase in the number
of citations from the very beginning of the year of publication till
the date of observation.

(vi) Oth: Papers not belonging to any of the above mentioned
categories belong to this category.

Figure 3 presents the temporal profile of average countX values
for each of these 6 categories. Again, we can see that the average
countX values are the highest for the MonIncr and PeakLate
categories, which have been identified as having the categories cor-
responding to high number of citations in [7]. Similarly, average
countX values are the lowest for the MonDec and Others, which
have been identified as the categories corresponding to the low
number of citations (see [7] for details).

Figure 2: Average countX: temporal profiles for six citation
buckets over the publication age

We now plot the temporal profile for the average citeWords val-
ues for the six citation buckets in Figure 4. Similar to average
countX, while averaging for a citation bucket for a particular year,
we consider only those papers which have a non-zero citation in
that year. Average citeWords also shows a very similar trend as that
seen with the average countX values, an initial increase and then a
decreasing trend over the years. Interestingly, differences are ob-
served between various citation ranges with the papers having the
highest citations also earning a high number of average citeWords
over the years.

We further use six citation categories to plot the temporal profiles
in Figure 5. The trends are again very similar to those observed
for the case of average countX values, with the MonIncr and Peak-
Late categories having a higher value of average citeWords than the
other categories and MonDec category having the lowest values.



Table 2: Example citation contexts for paper (P) titled as On Relaxed Dynamic Programming in Switching Systems, published in
2005. Citer_id represents MAS identifier of the paper citing paper P. Publication year represents year of publication of citing paper.
Finally, Context column contains the citing sentence. There are several instances where a paper is cited more than once in a citing
paper. Also, a citing sentence might cite more than one paper. Citations are sorted in the descending order of the year of publication
of citing paper. Bold face text represents cited paper reference.

citer_id Publication year Context
5330841 2010 Our approach relies on the following result from relaxed dynamic programming [12, 15], which is a

straightforward generalization of proposition [5, Proposition 2.4], cf. [7] for a proof

6899965 2009 In [18, 19] a relaxed dynamic programming procedure is proposed
The existence of a solution is assumed in [18,19], which is different from the objective in this paper; to
obtain a sub-optimal solution only when the minimum does not exist

5179891 2009 Recently, this has been studied by Lincoln and Rantzer in [11,17]
5977376 2009 The paper [6] (see also [5]) uses controllability conditions and techniques from relaxed dynamic pro-

gramming [13, 18] in order to compute explicit estimates for the degree of suboptimality, which in
particular lead to bounds on the stabilizing optimization horizon N which are, however, in general not
optimal

6006644 2009 Our approach relies on results on relaxed dynamic programming [9], [13] already used in an MPC
context in [7] which we adapt to our variable control horizon setting

6413388 2008 Inequalities of such type have been used frequently in the optimal control literature, however, a system-
atic study seems to have performed only recently in [14, 18]
The approach we take in this paper relies on recently developed results on relaxed dynamic program-
ming [14, 18]

5052733 2008 These general algorithms are also used to study switched systems in [11], [12]
5433268 2007 Some are based on a newly elaborated condition of optimality see e.g., [1], [2],[3], others are more

related to semi-classical approaches see e.g., [4], [5], [6], [7]
4971068 2007 A novel approach to overcome some of the difficulties mentioned above was recently proposed in [4],

[5], [3], see also [14] for examples from switching systems

12659162 2006 For further details on the theoretical foundations, the reader is referred to [13]]
Further discussion of the implicit algorithm is given in [13]

50488928 2006 In a recent work, it is shown that the optimal control problem can be reformulated as an approximate
linear-quadratic problem, whose complexity grows only polynomially [10]

2992574 2005 Konda and Tsitsiklis [KoT03], Marbach and Tsitsiklis [MaT01], Rantzer [Ran05],
12894773 2005 In [16], This led some to develop relaxed DP techniques, e.g. (Rantzer, 2005)

Figure 3: Average countX: temporal profiles for the six citation
categories [7] over the publication age

4.4 Correlation between citation counts and
citation context features for the initial years

To motivate the importance of average countX and citeWords as
features for future citation prediction, Table 3 shows some specific
examples of papers having the same citation count in the first two
years after publication but different average countX and citeWords
values. What we observe is that in both the cases, among the papers
having the same citation count, the paper having a high countX (and
citeWords) value in the initial two years receives a much higher
citation count in the future. Thus, the average countX feature from

Figure 4: Average citeWords: temporal profiles for the six cita-
tion buckets over the first 10 years of publication age

the initial years of publication can serve as an important feature
towards predicting future citations.

Table 3: Example paper-pairs having a similar citation count
in the initial 2 years of publication but different countX values.

Paper ID Initial citation
count

Initial Avg.
countX

Initial Avg.
citeWords

Final Citation
count

349111 4 1.75 41.75 140
25 4 1 10.58 47

1911 7 3.29 47.9 155
349954 7 1.42 16.35 38



Figure 5: Average citeWords: temporal profiles for the six cita-
tion categories [7] over the first 10 years of publication age

Figure 6: Correlating citation count and countX buckets. (a)
Correlation at 5 years after publication; (b) Correlation at 9
years after publication

Figure 7: Correlating citation count and citeWords buckets.
(a) Correlation at 5 years after publication; (b) Correlation at
9 years after publication

We further study whether the average countX and average cite-
Words values from the initial two years after publication can serve
as discriminating features to predict citations at a later point of
time. We, therefore, divide all the papers in 3 ranges as per the
average countX values ({1}, (1, 1.5] and (1.5,−)) and as per the
average citeWords ((0, 10.5], (10.5, 16.5] and (16.5,−) in the ini-
tial two years of publication. We call these ranges as low, medium
and high respectively. We now take citation counts of the papers for
the time points, corresponding to 5 and 9 years after publication.
For each such time point, we create 6 different citation buckets (top
0.1% etc.) and plot the distribution of the papers falling into these
6 citation buckets on various countX and citeWords ranges. For
example, 5 years after publication, 75% of the papers in the lowest
citation category have an average countX value=1 (see Figure 6(a)).
On the other hand, more than 75% of the papers in the top two cat-
egories (top 0.1% and top 0.1-1%) have a countX value≥ 1.5. The
trend becomes much more prominent for 9 years after publication
(Figure 6(b)), with the probability of a paper having countX ≥ 1.5
increasing with increasing citation counts.

Very similar trends are observed for the average citeWords as
well (see Figure 7). From these figures as well as examples in Ta-
ble 3, it is clear that information from average countX and average
citeWords in the initial years of publication acts as a discriminating
factor for the future citation counts, such that most of the highly
cited papers have high values of average countX and citeWords in
the initial years, which is not true for the low-cited papers.

Motivated by these examples, we now use these citation context
features for the task of future citation prediction. The model is
described in the next section.

5. CITATION PREDICTION MODEL
We extend the two-stage stratified learning framework proposed

in [6] with the addition of three features. In the first stage, a query
paper is classified into one of the citation profile category using
Support Vector Machine (SVM) learning model. Further, for each
category, a Support Vector Regression (SVR) model is learned for
predicting citation counts. Thus, given a query paper, we first clas-
sify it into one of the six citation profile categories. Post classifi-
cation, category based SVR is used to predict citation count. Our
citation prediction model uses features at the time of publication,
along with the citation information from the first 2 years after pub-
lication. Features from the time of publication are the same as re-
ported in [6]. These features can be divided into three categories:
features based on the paper content, features based on author infor-
mation and features based on venue information. For the sake of
completeness, we describe these features in brief below. For more
details, the reader is requested to look into [6].

5.1 Features based on paper content
We used five paper-centric features as proposed in [6]. Last three

among these are entropy based features.
(a) Team-size (Team): The number of authors in a paper.
(b) Reference count (RefCount): The number of references men-
tioned in the reference section of a paper.
(c) Reference diversity (RDI): RDI measures the diversity in the
fields of the referred papers. A paper citing papers of various fields
has a high value of RDI.
(d) Keyword diversity (KDI): Keyword diversity refers to diver-
sity in the keywords mentioned in the paper.
(e) Topic diversity (Topic): Each paper is assigned a set of proba-
ble topics inferred from LDA. Topic diversity gives a diversity over
these probable topics.

5.2 Features based on Author information
The author of a publication plays an important role in its pop-

ularity. The following four author-centric features were used for
citation prediction.
(a) Author h-index (HIndex): H-index is a standard measure for
author productivity and impact. This feature measures average h-
index of the authors at the time of publication.
(b) Author productivity (ProAuth): Author productivity refers to
the count of his publications. A more productive author will pro-
duce more. The feature is an average of the productivity of the all
the co-authors of a paper.
(c) Author diversity (AuthDiv): Author diversity refers to the di-
versity in the research fields of author publications. A highly di-
verse author will publish in different domains. The feature is an
average of all the authors taken together.
(d) Sociality of author (NOCA): This feature counts the number
of co-authors in all the publications of each author present in the
paper.



5.3 Features based on venue information
We also used certain features based on the prestige as well as the

diversity of the venue, where the paper has been published. These
features are described in detail below.
(a) Short term venue prestige (VenPresS): Short term venue pres-
tige measures the average number of citations for the papers pub-
lished in a venue during the two preceding years.
(b) Long term venue prestige (VenPresL): Long term venue pres-
tige measures the average number of citations for the papers pub-
lished in a venue so far.
(c) Venue diversity (VenDiv): This feature measures the diversity
in the research fields of the papers published in a venue.

5.4 Features after the publication year
In addition to these features, we also utilize the two features de-

rived from the citation context, the average countX and average
citeWords for the first 2 years after publication, as well citation
count received after the first 2 years of publication.

In the next section, we report the experiments using our citation
prediction model.

6. EXPERIMENTS
We perform experiments using the stratified learning framework

for citation prediction. We selected papers having at least 10 years
of history and published in between 1970 - 2005. We divided this
dataset into training and testing sets. For training, we consider pa-
pers published in between 1970 - 2000. For testing purpose, we
took the range as 2001 - 2005. First of all, we learn a stage-I classi-
fication model using our training dataset. We also learn separate re-
gression models for each citation category, for each time point, for
which the citation count is to be predicted. Given a query paper,
first the classification model is used to assign a citation category
(stratum) to it (stage I). In stage II, a regression model trained on
the assigned category is used for citation count prediction for the
specified time periods. We use all the features described in section
5. We have used three different time points ∆t = 5, 7, and 9 for
prediction.

We evaluate our model on two baselines. The first baseline [19]
is similar to our model except that it does not include the classifi-
cation stage. Thus, all the features are directly used in a regression
model for citation prediction. We use Chakraborty et al. [6] as the
second baseline. While the authors conducted experiments both
with and without the initial year of publication information, we use
the citation count of first two years for their method for a fair com-
parison. Thus, this baseline is very similar to our model with the
only difference being that we use two citation context features iden-
tified in this paper, average countX and average citeWords, for the
tth year after publication, with t = 0, 1, 2.

6.1 Evaluation metrics
We use the following three metrics for evaluating our results.

6.1.1 Coefficient of determination (R2)
Coefficient of determination (R2) [4] is a number that indicates

how well data fit a statistical model of future outcome prediction.
It measures the variability introduced by the statistical model. It
is defined as the proportionate reduction in uncertainty, measured
by Kullback-Leibler divergence, due to the inclusion of regressors.
Let d be the document in test document set DT , we calculate R2

as:

R2 =

∑
dεDT

(CTccp(d)− CT (DT ))2∑
dεDT

(CT (d)− CT (DT ))2
(5)

Here, CTccp(d) denotes the predicted citation count for docu-
ment d. CT (DT ) denotes the mean of observed citation counts for
documents in DT . (CT (d) denotes actual citation count for doc-
ument d. R2 values ranges from 0 to 1. A larger value indicates
better performance.

6.1.2 Pearson correlation coefficient (ρ)
Pearson correlation co-efficient (ρ) [12] measures the degree of

linear dependence between two variables. It is defined as the co-
variance of the two variables divided by the product of their stan-
dard deviations.

ρX,Y =
cov(X,Y )

σXσY
(6)

cov(X,Y ) = E[(X − µX)(Y − µY )] (7)

Here, cov(X,Y) denotes covariance between X and Y, σX and σY
denote standard deviation values for X and Y respectively. Sim-
ilarly, µX and µY denote mean values for variables X and Y re-
spectively. E represents the expected value. ρ ranges from -1 to
1, where ρ = 1 corresponds to a total positive correlation, 0 cor-
responds to no correlation, and −1 corresponds to total negative
correlation. A larger value indicates better performance.

6.1.3 Mean squared error (θ)
Mean square error (θ) measures the expected value of the squared

error loss in estimation. It is a risk function corresponding to the
expected value of the squared error loss. For n number of observa-
tions, we define mean squared error as:

θ =

∑n
i=1 (Ŷi − Yi)

2

n
(8)

Here, Ŷ and Y denote the vectors of predicted and actual values
respectively. A smaller value indicates better performance.

6.2 Comparisons with the baseline models
Next, we compare the performance of the two baselines with our

model. We also present performance statistics for stage I (classifi-
cation) and stage II (prediction). Along with performance analysis,
we compare categories and analyze results.

Table 4 compares the performance of these baselines with our
model. Columns 2-4 in Table 4 show the predictive performance
for baseline I using three metrics, while columns 5-7 show the pre-
dictive performance of baseline II. Columns 8-10 show the perfor-
mance of our model.

We observe that for all the three systems, performance decreases
with the increase in time period for prediction, with the best perfor-
mance achieved for ∆t = 5. While baseline I performs the worst
among the three models, the R2 value of 0.56 obtained for ∆t = 5
is in itself significantly better that some previous works. For ex-
ample, Kulkarni et al. [11] achieved an R2 value of 0.2 using 328
medical articles. Baseline II performs better than baseline I for all
of the three time-periods. This performance improvement can be
credited to the stratified learning approach used in baseline II, as
was established in [6]. Our model performs better than both the
baselines for all the three time-periods. While the improvements
over the first baseline are almost over 50% in terms of R2, im-
provement of the order of 8-10% are achieved over baseline II as
well. Improvement in terms of θ are of the order of 20-25% over



the baseline II. Since the only difference between baseline II and
our model are the average countX and average citeWords features
identified in this paper, this improvement can be credited to the use
of initial year information from the citation context of the paper.

Table 4: Performance comparison between Baseline I, Baseline
II, and our model. Three evaluation metrics – θ, R2 and ρ are
used. A low value of θ and high values of R2 and ρ represent
an efficient model. Prediction is made over three time periods
– ∆t = 5, ∆t = 7 and ∆t = 9.

Baseline I Baseline II Our Model
R2 ρ θ R2 ρ θ R2 ρ θ

∆ t=5 0.56 0.59 14.56 0.78 0.76 10.45 0.84 0.79 7.86
∆ t=7 0.54 0.57 15.90 0.74 0.72 12.57 0.81 0.75 9.70
∆ t=9 0.51 0.54 17.22 0.73 0.68 14.89 0.78 0.74 12.43

6.3 Category-wise performance analysis
Since we use the six categories as strata, we further analyze the

prediction results for each of these categories. Table 5 presents
category-wise performance metrics (except the category Oth) val-
ues for the three time-periods. Figure 8 gives the scatter plots for
each category for the prediction task for the three time periods.
X−axis denotes the actual citation count, while the Y−axis de-
notes the predicted citation count.

From Table 5, we observe that for ∆t = 5, the performance is
the best for the PeakLate category on all the three metrics. Figure
8 also confirms this observation with most of the points densely ac-
cumulated around x = y line. For ∆t = 7, PeakLate performs the
best on ρ, while MonDec and MonIncr perform well on R2 and θ
respectively. For ∆t = 9, MonIncr performs the best among all
the categories for all the three evaluation metrics. Overall, Peak-
Late and MonIncr categories perform the best. This is very crucial
for the citation prediction model, as these categories correspond to
the highly cited papers [6].

From Figure 8, we observe that for ∆t = 5, all categories show
roughly the same pattern. Majority of the papers lie below the line,
which denotes that in the initial years after publication our model
slightly under-estimates the citation counts. The only cases of over-
estimation are for the PeakMul category, ∆t = 9 (majority papers
above the line) and for the MonIncr category for ∆t = 7.

6.4 SVM classification analysis
The first stage SVM model classifies each paper into one of the

six categories. Table 6 presents the confusion matrix of SVM clas-
sification. Each entry in the first column represents a ground truth
category of the paper. Similarly, each entry in the first row rep-
resents predicted category. We observe that around 50% of Oth
category paper are wrongly classified into PeakMul. While Mon-
Dec has the highest accuracy (0.989), more than 29% PeakInit are
classified into MonDec, which in turn decreases the accuracy for
PeakInit category. As our dataset is highly biased towards Oth cate-
gory (highest % of papers), SVM overestimates Oth category in the
classification. Classification inaccuracy in the first stage decreases
prediction accuracy in the second stage, with the Oth category play-
ing a significant role in lowering the precision.

6.5 Paperwise analysis
Table 7 presents one best representative paper from each of the

five categories. For each paper, we calculate the absolute differ-
ence between actual citation count and predicted citation count for
our model, baseline I and baseline II for three time periods. As

observed from Table 7, our model is closest to the actual values in
terms of citations at any time instance.

6.6 Feature Analysis
We now study as to how various features correlate with the actual

citation counts. Accordingly, we divide our features into 6 different
sets and compute Spearman’s correlation for the three time-periods
in Table 8. We can see from the table that the last three features,
namely average countX, average citeWords and 2-year citations,
show a much higher correlation than the other three feature sets.
While the correlation for 2-year citation feature is slightly higher
than average countX for ∆t = 5, correlation is the highest for av-
erage countX for ∆t = 9. Thus, average countX serves as the most
important feature for predicting the long term citation behavior of
the papers.

Table 8: Average Spearman’s rank correlation of each feature
category (column 1) with the actual citation count without cat-
egorization for ∆ t=5,7 and 9 years after publication

Feature category ∆ t=5 ∆ t=7 ∆ t=9
Author centric 0.387 0.342 0.317
Venue centric 0.343 0.309 0.285
Paper centric 0.429 0.417 0.392

Average countX 0.569 0.543 0.521
Average citeWords 0.512 0.499 0.481

2 year citation 0.571 0.543 0.502

6.7 Comparison with past works
The experimental results clearly confirm that the proposed method

for citation prediction outperforms the other baselines for various
time-periods. Further, we wanted to put this work in perspective of
the previous related works for this problem. Table 9 lists five other
works and compares them for the size of the dataset used for the
study, year-ranges of the test papers, method used by the papers, as
well a time period for which theR2 values have been reported. Our
dataset size is comparable to the other datasets reported in the lit-
erature. Also, we achieve a better R2 value on this massive dataset
than the ones reported earlier in the literature. Our prediction time
period (∆t = 9) is the maximum among all these works.

7. CONCLUSION AND FUTURE WORK
In this paper, we have used a massive dataset of citation contexts

to show that the features extracted from the citation contexts of the
papers, in the immediate years after publication, play a vital role
for the task of future citation prediction. We introduced two new
features, average countX and average citeWords, and feature analy-
sis showed that these citation context features are highly correlated
with the actual citation counts, specifically for the long-range cita-
tion prediction.

For the citation prediction task, we used a stratified learning
framework, similar to [6]. Experimental results confirm that in-
cluding the citation context features significantly improves the ac-
curacy over [6] under various experimental settings for different
evaluation metrics.

In future, we plan to extend this work along many different di-
mensions. First, we only used two features from the citation context
in this work. More features based on the textual analysis of citation
contexts can be investigated. Also, we would like to investigate the
classifier further to reduce the errors due to the classification stage.
In addition, we plan to make the citation context dataset publicly
available with additional insights and properties.



Table 5: Category-wise prediction accuracies using three metrics.
PeakInit PeakMul PeakLate MonDec MonIncr

R2 ρ θ R2 ρ θ R2 ρ θ R2 ρ θ R2 ρ θ
∆ t=5 0.76 0.81 7.09 0.79 0.73 8.25 0.89 0.83 1.96 0.88 0.78 12.20 0.79 0.79 11.51
∆ t=7 0.77 0.72 9.91 0.78 0.76 9.78 0.81 0.78 9.88 0.89 0.77 9.86 0.80 0.76 9.22
∆ t=9 0.74 0.75 14.44 0.78 0.73 13.40 0.79 0.75 13.32 0.79 0.75 13.32 0.79 0.79 12.61

Figure 8: (Color online) Change in prediction over the time-periods for each category. Each scatter plot shows relation between
actual citation count with predicted citation count. Here, from left to right, red color represents PeakInit, green color represents
PeakMul, yellow color represents PeakLate, blue color represents MonDec and cyan color represents MonIncr. Black color line
represents x = y line passing through origin.

Table 6: SVM classification confusion matrix: Column 1 represents the ground truth categories, column 2 represents total number of
papers in each of these categories, columns 3-8 represent the predicted categories and column 9 presents the accuracy values for each
category. Correct classification results are highlighted in bold font from column 3-8. In column 9, highlighted bold font represents
both the highest and lowest accuracy values

No. of papers in category PeakInit PeakMul PeakLate MonDec MonIncr Oth Accuracy
PeakInit 15178 10987 12 134 3245 43 757 0.724
PeakMul 30969 6 27554 1 1 0 3407 0.889
PeakLate 8946 49 0 7298 23 0 1665 0.815
MonDec 5263 1 22 0 5207 0 55 0.989
MonIncr 4010 1 64 1 0 3005 1003 0.749

Oth 142792 13 70618 23 1 0 72138 0.494
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