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Abstract

Understanding scholarly articles is a key ingredient of impressive research recipe.
Scholarly articles keep the scientific community up to date with the current re-
search and development results and ideas. With the tremendous advancement
in Internet infrastructure, we are witnessing an ongoing explosion in scholarly
information that is generated. In this thesis, we attempt to introduce, study
and solve some of the challenges emanating from scholarly volume overload. In
particular, we look into three different dimensions: (i) metadata, structure, bib-
liography and experimental performance extraction from scholarly articles, (ii)
designing network-assisted aging growth models for evolving citation networks
with novel proposal of temporal summaries, and (iii) leveraging textual and net-
work information to design long-term scientific impact prediction frameworks.
While the first objective is related to the curation of scientific data, the second
one pertains to its growth and the third one demonstrates real-world application.

Curation: We develop two open-source knowledge extraction frameworks for
scholarly articles. The first framework, OCR++, is a hybrid framework to ex-
tract textual information such as metadata, structure, and bibliography from
PDF research articles. OCR++ employs a variety of Conditional Random Field
(CRF) models and hand-written rules specially crafted for handling various
tasks. The second framework mines experimental performance from papers em-
bedded within comparative tables to construct performance tournament graphs
that encode information about performance comparisons between scientific pa-
pers. We also present a bunch of different ways to aggregate the tournament
edges and a bunch of ways to score and rank papers on the basis of this in-
complete and noisy information. We show that our scheme of ranking brings
forth the state-of-the-art papers at the top of the ranklist unlike well-established
academic search systems like Google Scholar and Semantic Scholar that mostly
place highly cited papers at the top of the ranklist. Also, the system is useful in
automatically discovering and maintaining leaderboards in the form of partial
orders between papers.



Growth: We next present the first plausible network-driven set of models
for obsolescence in the context of research paper citations, based on a nat-
ural notion of relay-linking. In fact, we observe that such a relaying process
indeed exists by conducting a challenging micro-scale experiment on real data.
We propose several measurements on citation network that constitute tempo-
ral signatures summarizing the coexistence of entrenchment and obsolescence.
Our proposed network influenced models of aging mimic temporal signatures of
real networks better than state-of-the-art aging models.

Application: Finally, as an application of curated scientific knowledge, we
improve upon scientific impact prediction. We present empirical evidences of
high correlation between (i) two textual features extracted from the citation
contexts and (ii) three different characteristic properties of early citers with
long-term citation counts of the paper. We append these features along with
various other features available at the time of publication to improve the pre-
diction accuracy of state-of-the-art baselines with high margin.

Keywords: scholarly knowledge, information extraction, citation network, per-
formance graph, network growth, long-term scientific impact.
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CHAPTER1
Introduction

Scientific articles are the principal medium of communication that keep the sci-
entific community up to date with the current research and development results.
They comprise publications that report theoretical, empirical, and application
works in natural and social sciences and engineering. Scientific knowledge is
continuously growing with new research that builds its foundation on earlier
research. Current research works may improve, corroborate, or refute exist-
ing knowledge in a specific domain. Scientific articles comprise patent articles,
academic research articles, white papers, books, etc. The number of English-
language scientific articles is estimated to be above 114 million by the beginning
of the year 2013 [94]. Jinha et al. [89] showed that scientific volume is increasing
with an annual rate of ∼ 3%. This overwhelming volume of articles is a monu-
mental source of scientific knowledge and know-how. In order to maintain this
vast resource of knowledge, we should continuously focus on the development
of scalable archival systems, academic library systems, etc.
With tremendous growth in Internet infrastructure, several online scholarly sys-
tems exists that not only substantially contribute in article curation (ArXiv,
NCBI, etc.), search and recommendation (Google Scholar, Microsoft
Academic Search, Semantic Scholar, Aminer, etc.), but also in so-
cial tasks like community building (ResearchGate), researcher identifica-
tion (ORCHID), code/data sharing (GitHub), knowledge sharing (Stack
Overflow), etc. These systems are not only immensely helpful to the research
community in searching through the vast volume of data, but also play a critical
role in community building. This ever-growing popularity of academic systems
has led to several seminal works on optimization, archival, scalability, retrieval,
electronic publishing, and privacy.
The current thesis focuses on a better understanding of academic research
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articles. The thesis introduces several interesting challenges in this area and
tries to provide elegant solutions to some of them. The academic research
articles are selected due to their easy availability. However, at several places,
the thesis claims to achieve similar performance on non-scholarly datasets as
well. The next section describes some of the intriguing challenges that we
intend to address in the current thesis.

1.1 Major challenges

The applications of data science to the scientific corpus is in its preliminary
stages. Current academic systems leverage rich semi-structured data present
within research articles. However, exponential growth in research volume has
led to the intractable problems of scientific data accessibility [58], reproducibil-
ity [12], text reuse and obfuscation [40, 118], and impact measurement [168]
that hampers our end goal of efficient research understanding. Some of the
fundamental challenges are summarized below:

• Inefficiency and insufficiency of current scholarly extraction sys-
tems: Majority of scientific articles exist in Portable Document Format
(PDF ) [89]. Processing of PDF scientific articles remains a major bot-
tleneck in automatic metadata extraction. Processing inaccuracies exist
mainly due to inherent OCR technology limitations. In addition, lack of
a standard extraction methodology to support diverse formatting styles
adopted by different publishing venues leads to insufficiency in schol-
arly extraction systems. Machine learning research in this area has been
dramatically limited by the lack of large-scale annotated corpora. Also,
comparatively less attention has been paid to document structure analysis
than metadata and bibliography extraction from scientific articles.

• Unexplored performance comparisons for ranking research arti-
cles: Performance comparison against competitive methods is a funda-
mental aspect of reporting research. However, the ordering of competing
techniques in a leaderboard depends on a large number of factors, in-
cluding the task being solved, the data set(s) used, the experimental
conditions, and the choice of performance metrics. Current state-of-
the-art scholarly information extraction systems like GROBID [115],
ParseCit [48], etc., fail to extract rich semantic performance informa-
tion present in tables and charts. As a consequence, present academic
search systems utilize relevance, recency, and popularity based metrics
like citation count, velocity, etc., instead of performance-based metrics
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for ranking research articles. This inherent discrimination against re-
ported performance results in inadequacy of comparative leaderboards. A
primary difficulty in the development of such system is the unavailability
of relevant data. Even if such a dataset is available, developing meaning-
ful data mining techniques to extract from the noisy scientific text would
be equally challenging.

• Incomplete understanding of citation growth dynamics: Scientific
research volume is growing exponentially with more and more research ar-
ticles entering into the scholarly system citing existing research papers.
This fast-evolving scientific network (hereafter ‘citation network’) throws
several challenges and opportunities. Therefore, understanding and mod-
eling growth factors is of prime importance for the entire research com-
munity. Citation network growth modeling has received much attention
in the last three decades [8, 55]. Despite this interest in general net-
work modeling, not many efforts have been put forward to specifically
understand several physical phenomena underlying the scientific network.
Few examples of such physical phenomena are aging [72, 186], promi-
nence [62], topic shifts [138], etc. Some of the highly celebrated models
like preferential attachment [8] and link copying models [100], while en-
abling elegant analysis, only capture rich-gets-richer effects, not aging
and decline. Recent aging models are complex and heavily parameter-
ized; most involve estimating 1–3 parameters per paper [168]. These
parameters are intrinsic: they explain the decline in terms of events in
the past of the same paper and do not explain, using the network, where
the citation might go instead. Also, traditional characterization of link-
ing dynamics is insufficient to judge the faithfulness of models. Collecting
real evidence to show the existence of link diversion in the scientific net-
work is an impractical task due to its inherent structure. Also, developing
a modeling framework in absence of such real evidence presents a sig-
nificant difficulty. Therefore, an immediate task would be to determine
whether this phenomenon could be captured in a real citation network.

• Unexplored early information to determine future scientific im-
pact: Success of a research work is estimated by its scientific impact.
Quantifying scientific impact through citation counts or metrics has re-
ceived much attention in the last two decades [136, 182]. However,
prediction of future citation counts is an extremely challenging task be-
cause of the nature and dynamics of citations [61, 70]. For example, in
contrast to the popular perception of unique citation profile, Chakraborty
et al. [31] showed the existence of six different citation profiles. Re-
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cent advancement in the prediction of future citation counts has led to
the development of complex mathematical and machine learning based
models. The existing supervised models have employed several paper,
venue, and author-centric features that can be obtained at the publica-
tion time [31, 182]. Despite this enormous interest, the characteristics of
early information generated immediately after publication have not been
dealt with in-depth. Information available within 1–2 years after publica-
tion includes initial popularity trends measured by citation counts, textual
patterns of incoming citation contexts, popularity and productivity of early
citing authors, etc. Availability of rich time-stamped scholarly data is a
major challenge. Also, curation of citation contexts from article’s full text
presents a challenging IR task.

With these challenges at hand, the thesis aims to solve different problems
in scholarly science particularly concentrating on the following - (i) informa-
tion extraction from scholarly articles, (ii) mining performance comparisons
to rank scholarly articles, (iii) modeling scientific growth through relay-linking
phenomenon, and (iv) estimating the long-term scientific impact. While the
first two objectives are related to the curation of scientific data, the third one
pertains to its growth, and the fourth one demonstrates real-world application.

1.2 Objectives

The thesis addresses four different issues which contribute to the four different
chapters –

1. Knowledge extraction from scholarly articles: Here we intend to
perform robust information extraction from research articles. In specific,
we aim to develop a robust scholarly information extraction framework
that automatically processes PDF scientific articles in a scalable fash-
ion. We believe that a key strategy to tackle problems (described in the
previous section) is to analyze research articles from different publishers
to identify generic patterns and rules, necessary for various information
extraction tasks.

2. Mining performance comparisons to rank scholarly articles: We
plan to develop a novel bibliometric system that robustly mines exper-
imental performance information reported in scientific articles. Perfor-
mance information is created by comparing multiple competitive meth-
ods against several evaluation metrics. We plan to extract performance
information from comparative tables. We also aim to propose a novel
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performance tournament graph with papers as nodes, where edges en-
code noisy performance comparison information extracted from papers.
In the face of noisy extractions, we plan to develop several approaches to
rank papers, identify the best of them, and show that commercial aca-
demic search systems fail miserably at automatic leaderboard discovery
and at finding papers listed in widely-used lists of state-of-the-art papers
in several areas of Computer Science.

3. Modeling scientific growth through relay-linking phenomenon:
Our next objective is to study the underlying behavior of link formation in
scholarly citation networks. We aim to develop a network growth model
based on surprising inversion or undoing of triangle completion, where an
old node diverts a citation to a younger follower in its immediate vicinity.
We argue that, in contrast to traditional growth models, the proposed
model will provide better fitness against the real citation network.

4. Estimating long-term scientific impact: As our final objective we
intend to leverage information from curated scientific data to develop
predictive systems for long-term popularity prediction. Citation count of
a publication is the most commonly accepted metric by the research com-
munity to evaluate the impact and quality of a research article. We aim to
augment information available at publication time with early information
available soon after publication. We plan to utilize both textual and net-
work information generated within 1–2 years after publication to estimate
future citation counts. Specifically, we plan to study early indicators of
long-term popularity.

1.3 Knowledge extraction from scholarly
articles

Obtaining structured data from documents is necessary to support retrieval
tasks. Various scholarly organizations and companies deploy information ex-
traction tools in their production environments. Through a comprehensive
literature survey, we find comparatively less research in document structure
analysis than metadata and bibliography extraction from scientific documents.
We propose OCR++, an open-source framework designed for a variety of infor-
mation extraction tasks from scholarly articles including metadata (title, author
names, affiliation, and e-mail), structure (section headings and body text, table
and figure headings, URLs and footnotes) and bibliography (citation instances
and references). We analyze a diverse set of scientific articles written in the
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English language to understand generic writing patterns and formulate rules
to develop this hybrid framework. Extensive evaluations show that the pro-
posed framework outperforms the existing state-of-the-art tools with a huge
margin in structural information extraction along with improved performance
in metadata and bibliography extraction tasks, both in terms of accuracy and
processing time.

1.4 Mining performance comparisons to rank
scholarly articles

A leaderboard is a tabular presentation of performance scores of the best com-
peting techniques that address a specific scientific problem. Manually main-
tained leaderboards take time to emerge, which induces a latency in perfor-
mance discovery and meaningful comparison. This can delay dissemination of
best practices to non-experts and practitioners. Regarding papers as proxies for
techniques, we present a new system to automatically discover and maintain
leaderboards in the form of partial orders between papers, based on perfor-
mance reported therein. In principle, a leaderboard depends on the task, data
set, other experimental settings, and the choice of performance metrics. Often
there are also tradeoffs between different metrics. Thus, leaderboard discovery
is not just a matter of accurately extracting performance numbers and com-
paring them. In fact, the levels of noise and uncertainty around performance
comparisons are so large that reliable traditional extraction is infeasible. We
mitigate these challenges by using relatively cleaner, structured parts of the pa-
pers, e.g., performance tables. We propose a novel performance improvement
graph with papers as nodes, where edges encode noisy performance compar-
ison information extracted from tables. Every individual performance edge is
extracted from a table with citations to other papers. These extractions resem-
ble (noisy) outcomes of ‘matches’ in an incomplete tournament. We propose
several approaches to rank papers from these noisy ‘match’ outcomes. We
show that our ranking scheme can reproduce various manually curated leader-
boards very well. Using widely-used lists of state-of-the-art papers in 27 areas
of Computer Science, we demonstrate that our system produces very reliable
rankings. We also show that commercial scholarly search systems cannot be
used for leaderboard discovery, because of their emphasis on citations, which
favors classic papers over recent performance breakthroughs.
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1.5 Modeling scientific growth through
relay-linking phenomenon

Understanding scientific literature growth has received much attention over
the last three decades. Citation network evolving over time by adding new
papers and citation links show the fascinating interplay between prominence
and obsolescence. With rapidly growing publication repositories, understanding
the networked process of obsolescence is equally important for an emerging
field. We propose several measurements on citation network that constitute
a temporal signature summarizing the coexistence between entrenchment and
obsolescence.

Our study led to a family of network growth models, roughly speaking: to
add a citation in a new paper, choose an existing paper p0, but if it is too old,
walk back along a citation link to p1 and (optionally) repeat the process. We
call this hypothesized process triad uncompletion and the associated generative
model relay-linking. Triad uncompletion is reverse of extremely popular triangle
completion process where if links (u, v) and (v, w) are present, we add a new
link (u,w)). In sharp contrast to existing work, we avoid modeling aging as gov-
erned by network-exogenous rules or distributions (whose complexity scales with
the number of nodes). Even though, our models have only two global param-
eters shared over all nodes, the proposed relay-linking models mimic temporal
signatures of real networks better than state-of-the-art aging models. We also
conduct an interesting study to show that temporal signatures for various re-
search communities can yield further insights into their comparative dynamics.

1.6 Estimating long-term scientific impact

Highly-cited works remain as one of the most important criteria for various or-
ganizations (e.g., companies, universities and governments) to identify the best
talents, especially at their initial stages. An early estimate would help in identi-
fication of promising articles that could accelerate research and dissemination of
new knowledge. The existing works have used various venue and author-centric
features, along with the citation information from the initial years for the task
of citation prediction. We argue that the features extracted from the citation
contexts can be extremely helpful for the future impact prediction. A citation
context is, in principle, a set of sentences where a paper is referred to. We
show that even using some very simplistic features extracted from the citation
context can boost the performance of a citation prediction system significantly.
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Next, we study the influence of early citing authors whom we call early citers
(EC) on the long-term scientific impact of a paper. This study proposes several
interesting properties of EC which leads to a brand new paradigm in citation
behavior analysis. Using a massive computer science bibliographic dataset we
identify two distinct categories of EC – we call those authors who have high
overall publication/citation count in the dataset as influential and the rest of the
authors as non-influential. We investigate three characteristic properties of EC
and present an extensive analysis of how each category correlates with citation
count in terms of these properties. In contrast to popular perception, we find
that influential EC negatively affects future citation counts possibly owing to
attention stealing. A detailed inspection of author collaboration network reveals
that this stealing effect is more profound if an EC is nearer, 1,2-hop neighbor,
to the authors of the paper being investigated.

1.7 Contributions

This thesis is primarily aimed at understanding different aspects of scholarly
information. Albeit there is a multitude of work in this topic with contribu-
tions from the domains of Computer Science, Information Science, and Physics,
plenty of fundamental questions still remain unanswered. Here we aim to an-
swer some of them. One of the primary objectives of the current thesis is to
develop publicly available prototype systems along with the proposed idea that
not only provide a testbed for validation of ideas but also act as indicators of
acceptability of new ideas. We summarize (we elaborate in the forthcoming
chapters) below the primary contributions of the thesis.

1.7.1 Knowledge extraction from scholarly articles

Although significant efforts have been put toward efficient extraction and cura-
tion of scientific data, most of the works are domain specific and error-prone.
We show development of OCR++, an open-source framework designed for
a variety of information extraction tasks from PDF scholarly articles includ-
ing metadata (title, author names, affiliation and e-mail), structure (section
headings and body text, table and figure headings, URLs and footnotes), and
bibliography (citation instances and references). Some of the interesting con-
tributions are as follows:

• We analyze a diverse set of scientific articles written in the English lan-
guage to understand generic writing patterns and formulate a huge set
of hand-written rules.
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• Hand-written rules are combined with a variety of Conditional Random
Field (CRF) models to develop a first-of-its-kind hybrid information ex-
traction framework.

• Extensive evaluations show that the proposed framework outperforms the
existing state-of-the-art tools with a huge margin in structural information
extraction along with improved performance in metadata and bibliography
extraction tasks, both in terms of accuracy and processing time.

• The current version of OCR++ is deployed at http://www.cnergres.
iitkgp.ac.in/OCR++/home/ along with the entire source code publicly
available.

1.7.2 Mining performance comparisons to rank
scholarly articles

We also present development of a new bibliometric system that robustly mines
performance comparison information reported in comparative tables. Some of
the main contributions are as follows:

• We identify table citations as a rich source of performance comparisons
and present development of information extraction system to extract la-
beled performance tournament graphs from tables.

• We show that the proposed extraction mechanism is extremely open-
domain and style-agnostic while demonstrating that performance com-
parisons can still be inferred from the extractions.

• We also propose several reasonable edge aggregation strategies to sim-
plify and featurize the performance improvement graph, in preparation
for ranking papers.

• We report an extensive, first-of-its-kind experiment that demonstrates
severe limitations of current academic search systems in retrieving per-
formance leaderboards.

• We adapt two widely-used tournament solvers and find that they are
better than some simple ranking baselines. However, we can further
improve on tournament solvers using simple variations of PageRank on a
graph suitably derived from the tournament.

http://www.cnergres.iitkgp.ac.in/OCR++/home/
http://www.cnergres.iitkgp.ac.in/OCR++/home/
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1.7.3 Modeling scientific growth through relay-linking
phenomenon

The rate at which papers in evolving citation networks acquire links shows
complex temporal dynamics. We propose a new temporal sketch of an evolving
citation network and introduce several new characterizations of a network’s
temporal dynamics. Then we propose a new family of frugal aging models
with no per-node parameters and only two global parameters. Our work reveals
certain interesting results:

• We reconcile physical phenomenon of obsolescence vs. entrenchment in
citation network. We propose two temporal signatures to summarize the
coexistence between entrenchment and obsolescence.

• We discuss insufficiency in intrinsic obsolescence based models. Several
previous growth models hypothesize that aging papers lose probability of
getting cited, but none of these models use the graph structure to predict
where these citations are likely to be redistributed.

• We show micro-scale circumstantial evidence to prove our hypothesis that
at a given point in time, an old popular paper p0 begins to lose citations
in favor of a relatively young paper p1 that cites p0.

• Our model is based on a surprising inversion or undoing of triangle com-
pletion, where an old node relays a citation to a younger follower in its
immediate vicinity. Our proposed new family of frugal aging models re-
quires no per-node parameters. Instead we show that only two global
parameters are sufficient.

• We propose three metrics (distance, turnover, and divergence) to measure
the closeness between real temporal signatures against the simulated net-
work. We minimize an optimization function using grid search approach
to obtain an optimal set of global parameters.

• As an interesting application, we show that estimated turnover values
negatively correlate with impact factor (IF10) for the four conference
subsets we choose.

1.7.4 Estimating long-term scientific impact

The success of academic entities like research papers, authors, publication
venues, organizations, etc. is estimated by their scientific impact. Although
significant efforts have been put forward to understand the scientific impact,
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most of the works are field-specific and highly debatable. The current thesis
studies popularity dynamics of research articles.

1. We conduct an experimental study to understand the role of citation
context in predicting long-term citation profiles. We show that features
gathered from the citation contexts of the research papers can be very
relevant for long-term scientific impact (LTSI) prediction. The other
contributions of the work are as follows:

• We create a massive dataset consisting of more than 26 million cita-
tion contexts for nearly 1.5 million research papers in the computer
science domain, crawled from Microsoft Academic Search (MAS).

• We extract two features from the citation contexts – average countX
(number of times a paper is cited within the same article, averaged
over all the citing papers) and average citeWords (number of words
within the citation context, averaged over all the citing papers).

• We then append these features along with various other features
available at the time of publication in an earlier framework based on
stratified learning [31] improving the prediction accuracy by 8-10%
on average over the best performing baseline.

2. In a subsequent work, we aim to better understand the complex nature
of the early citers (EC) and study their influence on long-term scientific
impact. EC represents the set of authors who cite an article early after
its publication (within 1–2 years).

• We identify two important categories of EC – we call those authors
that have high publication/citation count in the data as influential
and the rest of the authors as non-influential.

• We analyze three different characteristic properties of EC.

• We empirically show that early citations might not be always ben-
eficial; in particular early citations from influential EC negatively
correlates with the LTSI of a paper.

• We build a citation prediction model incorporating the EC features;
the prediction model by far outperforms the baseline predictions.



12 Chapter 1. Introduction

1.8 Organization of the thesis

The rest of the thesis is organized into six chapters.

Chapter 2 presents a detailed literature survey on different aspects associ-
ated with scholarly information which includes curation (crawling, processing,
search, and ranking), growth, and application to real-world systems (long-term
scientific impact estimation).

Chapter 3 is dedicated to our first objective of knowledge extraction from
scholarly articles. In specific we propose framework for extracting metadata,
structure, and bibliographical information from PDF research articles.

Chapter 4 is dedicated to our second objective of mining performance com-
parisons to rank scholarly articles. We propose a framework for extracting
performance information embedded inside comparative tables from research ar-
ticles. We further show that performance curation leads to improved visibility
of the state-of-the-art articles and automatic leaderboard discovery.

Chapter 5 deals with our third objective of studying the growth of scientific
volume. More specifically, we propose a relay-linking based growth model mo-
tivated by the fact that an older paper loses citations to a newer paper due to
aging effect. We further propose temporal signatures to show the interplay of
entrenchment and obsolesce together and to measure fitness between simulated
and real data.

Chapter 6 presents our final objective of leveraging scientific information to
improve the scientific impact prediction systems. In particular, we aim to per-
form the specific task of predicting long-term citation counts of a paper by
utilizing early information available within 1–2 years after publication.

Chapter 7 concludes the thesis by summarizing the contributions and pointing
to future directions that have been opened up from this thesis.



CHAPTER2
Related Work

Effective scientific literature understanding plays a critical role toward research
community’s common goal of “March for Science” . However, unprecedented
growth in research volume has led to several problems in accessibility [58, 76,
77, 103, 177], archival [44, 66, 146, 152], knowledge extraction [4, 59, 153],
search and ranking [68, 92, 104, 150, 174], recommendation [21, 132, 162,
167], reproducibility [12, 17, 133], text reuse and obfuscation [40, 64, 85, 118],
and summarization [122, 141, 142, 163]. In this chapter, we discuss relevant
literature related to the objectives of this thesis. In specific, we look into
three separate directions. The first part deals with knowledge extraction from
scholarly articles in general, followed by detailed description of the existing
academic extraction systems. We then move into second part where we look
into the existing network modelling strategies for evolving graphs in general,
and citation networks in particular. Finally we look into studies on long-term
scientific impact prediction.

2.1 Knowledge extraction from scientific
articles

In last two decades, the scientific community has witnessed substantial growth
in availability of scientific articles with the adoption of the Open Access pub-
lishing model. As a consequence, new methodologies and automated tools to
ease the extraction, semantic representation and browsing of information from
papers are necessary [145]. Obtaining structured data from scientific research
articles is necessary to support scholarly retrieval tasks [15]. Majority of schol-
arly extraction systems are ‘textual’ or ’text-based’. Among textual extraction

13
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systems, we find comparatively less research in document structure analysis
than metadata and bibliography extraction from scientific documents.
We discuss several state-of-the-art systems that utilize textual information
present in scholarly articles. Majority of scientific documents exist in PDF for-
mat due to ease in portability and printing [89]. Recent advancements in digital
libraries, particularly, preprint servers like arXiv1 have massively contributed
to the availability of LATEX source code repositories. Recently, similar submis-
sion policies have been introduced by ACL2, Elsevier3, PLOS4, etc. Next, we
describe some state-of-the-art textual scholarly knowledge extraction systems –

2.1.1 ParsCit

ParsCit [48] is an open-source reference string parsing package. ParsCit utilizes
trained Conditional Random Fields (CRF) [102] model used to label the token
sequences in the reference string. They utilize a heuristic model to identify
reference strings (citation contexts) from a plain text file and map them to
parsed references. The package comes with utilities to run it as a web service
or as a standalone utility.

2.1.2 GeneRation Of BIbliographic Data (GROBID)

The most popular scholarly extraction system is GROBID [115]. GROBID is
a machine learning library for extracting, parsing and re-structuring raw docu-
ments such as PDF into structured TEI-encoded documents with a particular
focus on technical and scientific publications. Similar to ParsCit, it also uti-
lizes Conditional Random Fields (CRF) as the learning algorithm. It supports
header extraction of bibliographical information (e.g., title, abstract, authors,
affiliations, keywords, etc.), references extraction and parsing, parsing of ref-
erences in isolation, extraction of patent and non-patent references in patent
publications, parsing of names, in particular author names in header, and au-
thor names in references, parsing of affiliation and address blocks, parsing of
dates, and full text extraction from PDF articles, including a model for the
the overall document segmentation and a model for the structuring of the text
body. GROBID is currently deployed in production at ResearchGate5, HAL Re-

1https://arxiv.org
2http://acl2014.org/CallforPapers.htm
3https://www.elsevier.com/authors/author-schemas/latex-instructions
4http://journals.plos.org/plosone/s/latex
5researchgate.net



2.1. Knowledge extraction from scientific articles 15

search Archive, the European Patent Office6, INIST7, CERN8, etc. GROBID
currently supports batch processing, a comprehensive RESTful API, a JAVA
API, a relatively generic evaluation framework (precision, recall, etc.), and the
semi-automatic generation of training data.

2.1.3 PDFX

PDFX [43] is a rule-based system designed to reconstruct the logical structure
of scholarly articles in PDF form, regardless of their formatting style. The
system’s output is an XML document that describes the input article’s logical
structure in terms of title, sections, tables, references, etc. and also links it
to geometrical typesetting markers in the original PDF, such as paragraph and
column breaks. The key aspect of PDFX is that the rule set used relies on
relative parameters derived from font and layout specifics of each article, rather
than on a template-matching paradigm.

2.1.4 SVMHeaderParse

SVMHeaderParse [75] is a Support Vector Machine (SVM) [45] classification-
based method for metadata extraction from the header part of research papers.
Authors show that it outperforms other machine learning methods on the same
task. The method first classifies each line of the header into one or more of
15 classes. The classes are title, author, affiliation, address, note, email, date,
abstract, introduction, phone, keyword, web, degree, pubnum and page. An
iterative convergence procedure is then used to improve the line classification
by using the predicted class labels of its neighbor lines in the previous round.
Further metadata extraction is done by seeking the best chunk boundaries of
each line. SVMHeaderParse is deployed by CiteSeerx9 for header extraction.

2.1.5 Other systems

In addition to above state-of-the-art scholarly extraction systems, several
other systems exist like CERMINE [164], FLUX-CIM [46], PDFMEF [178],
Xtract [16], PDFMeat10, Mendeley Desktop11, etc. Lipinski et al. [110] con-
ducted a comparison study and observed that GROBID performed best, followed

6https://www.epo.org/
7www.inist.fr/
8https://home.cern/
9http://citeseerx.ist.psu.edu/

10https://github.com/mankoff/pdfmeat
11http://www.mendeley.com/
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by Mendeley Desktop. SciPlore’s Xtract, PDFMeat, and SVMHeaderParse also
delivered good results depending on the metadata type to be extracted.

2.1.6 Extraction algorithms

Researchers follow several different approaches for individual extraction tasks.
The approaches based on image processing segment document image into sev-
eral text blocks. Further, each segmented block is classified into a predefined
set of logical blocks using machine learning algorithms. Gobbledoc [124] used
X-Y tree data structure that converts the two-dimensional page segmentation
problem into a series of one-dimensional string-parsing problem. Dengel et
al. [53] employed the concept language of the GTree for logical labeling. Sim-
ilar work [57] presented a hybrid approach to segment an image by means of
a top-down technique and then bottom-up approach to form complex layout
component.
Similarly, current state-of-the-art systems use support vector machine
(SVM) [75] or conditional random field (CRF) [48, 102, 116] based machine
learning models for information extraction. A study by [71] compares ParsCit
(a CRF based system) and Mendeley Desktop (a SVM based system). They
observed that SVMs provide reasonable performance in solving the challenge
of metadata extraction than CRF based approach. One reason for the more
reliable SVM results may lie in the bad splitting of sequences extracted from
PDFs. Since every line break marks the beginning of a new sequence, sequences
belonging to the same metadata field but ranging over several lines are broken
apart. This happens especially for longer titles. While the SVM context model
can recover from such bad splits, CRFs cannot. CRFs do not consider labeling
information from previous sequences and hence may more easily fail in finding
bad splits. Rule-based approaches [16, 43] are also utilized to extract metadata
information.

2.2 Mining performance comparisons to rank
scholarly articles

Majority of performance comparison information is present in comparative tables
and charts. We, therefore, discuss several state-of-the-art systems that extract
information embedded in tables and charts. We also discuss works that leverage
citation graphs for search and recommendation of scholarly information.
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2.2.1 Automatic chart detection and extraction

Various studies have addressed the problem of detection and extraction of infor-
mation from scientific charts. Mitra et al. [121] developed a machine-learning-
based approach for automatic categorization of figures embedded in scientific
articles. Chen et al. [36] described a method to automatically annotate each
text in the statistical chart with semantic roles like axis labels, caption, etc.
However, the method does not extract original data values from the chart.
In [37], data values are extracted into XML format from black and white or
grayscale charts. Savva et al. [148] proposed a method to automatically infer
original chart data values upon the manual specification of chart regions in the
textual area. The limitation of the manual specification was removed in [83].
However, they handle only single-series bar charts. Extraction mechanism pro-
posed in [5] is fully automated using image processing and text recognition
techniques combined with various heuristics derived from the graphical proper-
ties of bar charts. It improves on [83] by overcoming the need of manual efforts.
Al-Zaidy et al. [7] utilizes machine learning methods for automatic information
extraction from bar charts. Cliche et al. [41] proposed deep learning methods
to extract data values from scatter plots.

2.2.2 Automatic table detection and extraction

Table detection, extraction, and annotation have been important research prob-
lems for years. To handle these issues, different approaches are designed for
different types of documents. Table extraction from HTML documents is a
well-studied problem. Several studies have attempted to address these chal-
lenges by utilizing pre-defined layout approaches [84, 154], heuristics-based ap-
proaches [96, 97, 125, 140], and statistical approaches [125, 135, 172], as well
as a mixture of both heuristic and statistical approaches [173]. The pre-defined
table layout based algorithms use a set of strict, pre-defined table layout in-
formation to detect tables. For a given type of image, it is usually able to
have a satisfactory detection performance. However, its extension ability is
very limited. The heuristics-based algorithms use a set of rules or pre-defined
syntax rules of table grammar to derive decisions. The complex heuristics are
usually based on the local analysis. It sometimes has an even more complicated
post-processing part. As for statistical or optimization based algorithms, they
either do not need parameters or need free parameters which are used in the
process are obtained by an off-line training process. Many statistical systems
utilize supervised machine learning algorithms like Decision trees [125, 172],
Hidden Markov models (HMM) [10], Conditional Random Field (CRF) [135],
SVM [172], or Neural Network [126] for table detection and extraction.
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Although considerable research has been done to extract tables from HTML or
image documents, extracting un-tagged tables (e.g. in PDF format) in digital
libraries is difficult. Tools that are specifically dedicated to table extraction from
PDFs include Tabula12, TableSeer [111], Pdf-table-extract13, Pdf2table [184],
and PDF-TREX [128]. Tabula utilizes state-of-the-art tool Apache PDFBox to
generate immediate XML character-level annotated data. XML files are further
processed using a set of heuristics and computer vision algorithms to generate
the final output. However, Tabula only works on text-based PDFs. TableSeer
crawls digital libraries, detects tables from documents, extracts tables meta-
data, indexes, and ranks tables, and provides a user-friendly search interface.
Pdf-table-extract utilizes heuristic-based line and cell finding algorithms. It out-
puts JSON, XML, and CSV lists of cell locations, shapes, and contents, and
CSV and HTML versions of the tables. Pdf2table is based on a heuristic ap-
proach that performs table recognition, in which information organized in the
tabular structure is recognized, and table decomposition in which recognized
elements are assigned to a table model. It also provides an additional interface
to manually edit parts of the extracted output. The approaches of Pdf2table,
TableSeer, and PDF-TREX suffer from several extraction inaccuracies. These
systems utilize Table Lines for detection and extraction. However, this may
lead to under- or over-segmentation because it depends on predefined thresh-
olds, spanning cells, and it would be difficult to distinguish between tables if a
page contains more than one table [123].

2.2.3 Leveraging citation graphs in academic systems

Derek J De Solla Price [51] laid the foundation stone of citation graphs in bib-
liometry. The majority of academic search systems utilize citation graphs for
search and recommendation [14, 80, 160, 161]. They are also used to character-
ize popularity dynamics [13, 156, 168, 171, 180], topic evolution [79, 90], and
community detection [119]. Commercial scholarly search systems like Google
Scholar (GS)14, Microsoft Academic Search (MAS)15, Semantic Scholar (SS)16,
AMiner (AM)17 etc., incorporate relevance, age, citation trajectory, citation ve-
locity, and impact factor for ranking papers. These systems utilize scholarly
extraction tools (described in Section 2.1) for obtaining citation information.

12https://github.com/tabulapdf/tabula
13https://github.com/ashima/pdf-table-extract
14https://scholar.google.co.in/
15https://academic.research.microsoft.com/
16https://semanticscholar.org/
17https://aminer.org/
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The limited early visibility of state-of-the-art papers, along with diverse tasks,
data sets and baseline approaches, leads to several ill-effects in comparison
studies. Kharazmi et al. [95] present evidence that comparison with a strong
baseline is more informative than with multiple weaker baselines. They found
that the Information Retrieval community continues to test against weaker
baselines. A similar study [52] shows that comparison with multiple weak base-
lines led to “excessive optimism” in the progress made in an area of research.
Thus, automatic leaderboard generation is an interesting research challenge.
Recent works [78] have focused on automatic synthesis matrix (review matrix)
generation from multiple scientific documents. To the best of our knowledge,
no existing academic systems factor in comparative experimental performance
reported in papers.

2.3 Modelling scholarly network growth

In his classic papers, Price [51, 139] presents evidences of obsolescence in bib-
liography network. Recently, Parolo et al. [131] presented evidence that it is
indeed becoming “increasingly difficult for researchers to keep track of all the
publications relevant to their work”, which can lead to reinventions, redundan-
cies, and missed opportunities to connect ideas. Based on analysis of cita-
tion data, they propose a pattern of a paper’s citation counts per year, which
peaks within a few years and then the typical paper fades into obscurity. Such
works have seen considerable press following, with headlines18 ranging from the
tongue-in-cheek “Study shows there are too many studies" to the more alarmist
“Science is ‘in decay’ because there are too many studies”.
On the other hand, Verstak et al. [166] claim that fear of evanescence is mis-
placed, and that older papers account for an increasing fraction of citations as
time passes. In a related vein, when PageRank began to be used for ranking in
Web search, there was a concern that older pages have an inherent — and po-
tentially unfair — advantage over emerging pages of high quality, because they
have had more time to acquire hyperlink citations. In fact, algorithms have been
proposed to compensate for this effect [38, 130]. (In that domain, clickthrough
also provides valuable support for recency to combat historic popularity.)
So where does reality lie between entrenchment and obsolescence? Chakraborty et
al. [33] present a nuanced analysis that naturally clusters papers into the
ephemeral and the enduring. This gives hope that not all creativity is lost
in the sands of time, but neither do older papers capture all our attention.

18http://www.independent.co.uk/news/science/there-are-too-many-studies-new-
study-finds-10101130.html
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Others [168, 171] model aging as intrinsic to a paper, reducing the probability
of citing it as it ages, but do not prescribe where the diverted citations end up.
In an interesting work on explaining aging by attention stealing, Waumans et
al. [175] present several shreds of evidence of attention-stealing from parent
paper by child paper. They show that the arXiv article titled “Notes on D-
Branes" [137] published in the year 1996 started losing its citations in the very
next year (1997). The reason for attention stealing is attributed to four papers
that cite [137] and go further on the same topic. In another example, the paper
titled “Theory of Bose-Einstein condensation in trapped gases” [49] from the
American Physical Society dataset19 suffers from a similar stealing effect. This
paper starts losing attention to its three child papers six years after publication.
In all the three cases, the title clearly indicates the scientific content continuity
in the child paper.
Albert and Barabasi’s remarkable scale-free model (preferential attachment or
PA) [8] “explained” power law degrees, but failed to simulate many other natural
properties, such as bipartite communities. The “copying model” [100] gave a
better power law fit and explained bipartite communities. Recent works [106,
168, 171] have shown that classical network growth models do not capture
aging. Dorogovtsev et al. [55] empirically showed that power law aging function
better fits real citation networks. A similar study by Hajra et al. [72] reconfirms
the previous claim. Additionally, they show the existence of two exponents and
a possibility of a crossover from one to the other. Universally, the crossover
value was roughly close to ten years after publication. Recently, Wang et
al. [171] modelled aging using an exponential decay function. They proposed
that the probability of citing paper p at time t is proportional to the product
kp(t)e

−λ(t−bp), where kp(t) is the number of citations p has at time t, bp is its
birth epoch, and λ is a global decay parameter.
A more sophisticated model by Wang et al. [168] involves three model param-
eters ηp, µp, σp per paper. In effect, this model is just a reparameterization to
achieve data collapse [20] — collapsing apparently diverse citation trajectories
into one standard function of age. This thesis hypothesizes that the reason
is that aging papers lose probability of getting cited, but none of the aging
models use the graph structure to predict where these citations are likely to be
redistributed. This limitation also applies to Hawkes processes [11, 60].
Another interesting approach in modeling complex networks is through gener-
ative models. Majority of these models learn from data by leveraging Bayesian
non-parametrics. Schmidt et al. [151] derived an infinite mixture model as an
infinite limit of a finite parametric model, inferring the model parameters by
Markov chain Monte Carlo, and checking the model’s fit and predictive perfor-

19http://journals.aps.org/datasets
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mance. Similar works [127, 35] present application of Bayesian non-parametrics
in collaborative filtering, link prediction, and graph and network analysis. Prac-
tical application also requires a choice of priors that are tractable— though
the consequences of which remain unclear, e.g., for consistency and practical
performance [86].

2.4 Long-term scientific impact

The success of a research work is estimated by its scientific impact. Quantifying
scientific impact through citation counts or metrics [18, 56, 67, 81] has received
much attention in the last two decades. Although these approaches are quite
popular, they appear to be highly debatable [82, 101]. Additionally, they fail
to take into account the future accomplishments of a researcher/article. In
recent years, several researchers have investigated the problem of future cita-
tion count prediction [31, 136, 168, 182, 183, 185]. While some works propose
complex mathematical models [120, 158, 168, 170, 171, 179] incorporating age-
ing assumptions, majority of the works focused on supervised machine learning
models [32, 63, 182, 183]. Recently, Didegah et al. [54] presented an overview
of the literature on predicting scientific impact at the later time period. Ma-
jority of the past works have proposed a set of features and used a supervised
learning model to predict the citation count at a later time point. Next, we
discuss several discriminating features utilized in supervised learning models –

2.4.1 Discriminating features

Many works use only the information available at the time of publication to
predict future citation count, while other works also use information available
from the initial years after publication.

Information available at the time of publication

Several predictive frameworks [32, 63, 182, 183] leverage information available
at publication stage of a scientific article. This information can be categorized
into three types (i) paper-centric, (ii) author-centric, and (iii) venue centric.
Paper-centric information includes team-size, pages [114], number of articles
for the first author [63], number of citations for the first author [63], number of
affiliations [63], the journal impact factor [63], title, abstract, content novelty,
reference count, and several diversity measures like reference diversity, keyword
diversity, and topic diversity. Author-centric information includes author’s h-
index, productivity (measured by publication count), popularity (measured by
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citation count) [29], past influence (measured by citation count of author’s
most popular work), sociality (measured by PageRank value in co-authorship
network), and versatility (measured by author’s topic distribution). Venue cen-
tric information includes venue’s popularity (measured by citation count), venue
centrality (measured by PageRank value in the venue-venue citation network),
and past influence [182, 183].

Information generated after publication

In addition to information available at publication time, few works have lever-
aged information generated within 1–2 years after publication. There are few
recent works [23, 170] that present an empirical analysis of the correlation be-
tween short-term and long-term citation counts. To the best of our knowledge,
most of the post-publication information is limited to early popularity measured
by incoming citation counts within 1–2 years after publication. Stern [159]
reports that shortly after the appearance of a publication the combined use
of early citations and impact factors yields a better prediction of the long-
term scientific impact of the publication than the use of early citations only.
Chakraborty et al. [32] showed that citation counts accumulated within the
first year after publication as a feature can significantly improve the prediction
accuracy. Brody et al. [25] used “number of times downloaded” data within the
first 6 months after publication.

2.4.2 Several citation trajectories

A common underlying implicit assumption among research community is that
the citation trajectories of all published papers have similar characteristics.
However, an analysis of 463,348 papers from Physical Review (PR) corpus
observed that such an assumption is flawed and suggests high heterogeneity
in the citation histories [169]. In a similar attempt, Chakraborty et al. [31]
showed the existence of six different patterns of citation profiles of research
papers based on the number and position of peaks in the citation profile. They
proposed two-stage prediction model, which maps a query paper into one of
the six categories in the first stage, and then in the second stage, a regression
module is run only on the subpopulation corresponding to that category to
predict the future citation count of the query paper.

2.4.3 Predictive frameworks

Predictive frameworks are classified into three broad categories — (i) machine
learning models, (ii) mathematical models, and (iii) graph-based predictive
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models:

Machine learning models

Among machine learning (ML) based prediction models, majority of the works
have utilized support vector regression (SVR) [31, 183], classification and
regression tree (CART) [27, 183] and linear and multiple regression mod-
els [98, 114]. Within ML models, we categorize works into three types based
on the temporal availability of features – (a) features available at the time of
publication [27, 63, 98, 113, 182], (b) features available after publication [25],
and (c) combination of (a) and (b) [31]. Callaham et al. [27] used features
like journal impact factor, research design, the number of subjects, rated sub-
jectivity for scientific quality, news-worthiness, etc. Further, they train decision
trees to predict citation counts of 204 publications from emergency medicine
specialty meeting. Livne et al. [113] used five group of features – authors,
institutions, venue, references network, and content similarity to train an SVR
model. Similarly, Kulkarni et al. [98] also used information present at the publi-
cation time. They trained linear regression to predict citation count for five year
ahead window using 328 medical articles. Yan et al. [182] introduced features
covering venue prestige, content novelty and diversity, and authors’ influence
and activity. Another work used data generated after the publication to pre-
dict citation count [25]. In this study, the downloaded data within the first
six months after publication was used as a predictive feature. Chakraborty et
al. [31] proposed a two-stage prediction model by adopting stratified learning
approach, whereby, in the first stage, the model maps a query paper into one
of the six citation profiles (described in Section 2.4.2), and then in the second
stage a regression module is run only on the subpopulation corresponding to
that category to predict the future citation count of the query paper. The
prediction model consumes information present at the publication time as well
as citation information generated within the first two years after publication.

Mathematical models

The use of early citations to predict LTSI has been studied in various papers
using mathematical models. Wang et al. [170] and Mingers et al. [120] pro-
posed models that described how publications accumulate citations over the
time. Stegehuis et al. [158] employed two predictor models (journal impact
factor and early paper citations) to predict a probability distribution for the
future citation count of a publication. They only considered accumulated ci-
tations within one year after publication. This is in contrast to the approach
proposed by Wang et al. [168] where they allow predictions to be made fairly
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soon after the appearance of a publication. They propose three fundamental
citation driving mechanisms – (a) preferential attachment, (b) aging and nov-
elty, and (c) importance of a discovery. The importance of discovery depends
on so many intangible and subjective dimensions that it is impossible to objec-
tively quantify them. Therefore, they introduced a fitness parameter (η) as a
collective measure to capture the community’s response to a work. The fitness
parameter for each publication is sampled from a distribution (ρ(η)). Their
proposed model collapses the citation histories of papers from different journals
and disciplines into a single curve indicating that all papers tend to follow the
same universal temporal pattern. More recent work by Xiao et al. [179] explored
paper-specific covariates and a point process model to account for the aging
effect and triggering role of recent citations. Liangyue et al. [108] propose a
joint predictive model to forecast the long-term scientific impact problem, for-
mulated as a regularized optimization problem. Their work addresses four key
algorithmic challenges, including the scholarly feature design, the non-linearity,
the domain-heterogeneity, and the dynamics. Further, they propose a fast on-
line update algorithm to adopt joint predictive model efficiently over time. They
observe that citation history is a strong indicator of long-term impact and using
additional contextual or content features brings little marginal benefits in terms
of prediction performance.

Graph-based predictive models

Pobiedina and Ichise [136] introduce a new feature GERscore (Graph Evolution
Rule score), based on frequent graph pattern mining techniques, for citation
prediction. Yu et al. [185] propose a new data structure namely discriminative
term buckets to capture both document similarity and potential citation rela-
tion. They also propose metapath based feature space to interpret structural
information in citation prediction. Along with these novel ideas, they present
an extensive analysis of differences between citation prediction problem and the
related work, e.g., traditional link prediction solution.

In this thesis, we utilize and construct several time-stamped scholarly datasets
and extraction tools to address the above issues that remained unattended so
far in the literature. The observations that we make are very unique and the
conclusions that we draw, thereby, are significantly novel adding huge value to
the rich digital library literature.



CHAPTER3
Knowledge extraction from

scholarly articles

This chapter is devoted to our first objective - knowledge extraction from schol-
arly articles. More specifically, we develop a framework OCR++ that performs
information extraction from PDF research articles.

3.1 Introduction

Obtaining structured data from documents is necessary to support retrieval
tasks [15]. Various scholarly organizations and companies deploy information
extraction tools in their production environments. Google scholar1, Microsoft
academic search2, Researchgate3, CiteULike4, etc., provide academic search en-
gine facilities. European publication server (EPO)5, ResearchGate and Mende-
ley6 use GROBID [115] for header extraction and analysis. A similar utility
named SVMHeaderParse is deployed by CiteSeerX7 for header extraction.
Through a comprehensive literature survey, we find comparatively less research
in document structure analysis than metadata and bibliography extraction from
scientific documents. The main challenges lie in the inherent errors in OCR
processing and diverse formatting styles adopted by different publishing venues.

1http://scholar.google.com
2http://academic.research.microsoft.com
3https://www.researchgate.net
4http://www.citeulike.org/
5https://data.epo.org/publication-server
6https://www.mendeley.com
7http://citeseerx.ist.psu.edu/

25
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We believe that a key strategy to tackle this problem is to analyze research
articles from different publishers to identify generic patterns and rules, spe-
cific to various information extraction tasks. We introduce OCR++, a hybrid
framework to extract textual information such as (i) metadata – title, author
names, affiliation, and e-mail, (ii) structure – section headings and body text,
table and figure headings, URLs and footnotes, and (iii) bibliography – cita-
tion instances and references from scholarly articles. The framework employs
a variety of Conditional Random Field (CRF) models and hand-written rules
specially crafted for handling various tasks. Our framework produces compara-
tive results in metadata extraction tasks. However, it significantly outperforms
state-of-the-art systems in structural information extraction tasks. On average,
we record an accuracy improvement of 50% and a processing time improvement
of 52%. We claim that our hybrid approach leads to higher performance than
complex machine learning models based systems. We also present two novel use
cases including extraction of public dataset links available in the proceedings of
the NLP conferences archived in the ACL anthology.
In Section 3.2, we present the overall framework with detailed description of
several extraction modules. Section 3.3 presents detailed evaluation against
state-of-the-art scholarly extraction tool GROBID. Section 3.4 presents two
interesting usecases. In Section 3.5, we present the current deployment infor-
mation. Section 3.6 summarizes the current chapter.

3.2 Framework overview

OCR++ is an extraction framework for scholarly articles, completely written in
Python (Figure 3.2). The framework takes a PDF article as input, (1) converts
the PDF file to an XML format, (2) processes the XML file to extract useful
information, and (3) exports output in structured TEI-encoded8 documents.
We use open source tool pdf2xml9 to convert PDF files into rich XML files.
Each token in the PDF file is annotated with rich metadata, namely, x and y
co-ordinates, font size, font weight, font style, etc. (Figure 3.1).
Figure 3.2(a) describes the sub-task dependencies in OCR++. The web inter-
face of the tool is shown in Figure 3.2(b). We leverage the rich information
present in the XML files to perform extraction tasks. We use several NLP fea-
tures in the current extraction framework. Some of these include part-of-speech
(POS) tags, token length, orthographic case information, etc. Although each
extraction task described below is performed using machine learning models

8http://www.tei-c.org/index.xml
9URL: http://sourceforge.net/projects/pdf2xml/. We employ version 1.2.7 devel-

oped for 64 bit Linux systems.
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Figure 3.1: Screenshot of pdf2xml tool output.

(a) Sub-tasks dependencies in
OCR++.

(b) Screenshot of OCR++ web inter-
face.

Figure 3.2: OCR++ framework overview and user interface.

as well as handwritten rules/heuristics, we only include the better performing
scheme in our framework. Next, we describe each extraction task in detail.

3.2.1 Chunking

As a first step, we segment XML text into chunks by measuring distance from
neighboring text and differentiating from the surrounding text properties such
as font-size and bold-text.

3.2.2 Title extraction

We train a CRF model to label the token sequences using 6300 training in-
stances. Features are constructed based on generic characteristics of format-
ting styles. The token level feature set includes boldness, relative position in
the paper, relative position in the first chunk, relative size, the case of the first
character, boldness + relative font size overall, the case of the first character
in the present and the next token, and the case of first character in present and
the previous token.
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3.2.3 Author name extraction

In this sub-task, we use the same set of features as described in the title ex-
traction sub-task to train the CRF model along with a heuristic that the tokens
eligible for the author names are either present in the first section or within 120
tokens after the title. Different author names are distinguished using heuristics,
such as the difference in y-coordinates, tab separation, etc. Further, false pos-
itives are removed using heuristics such as length of consecutive author name
tokens, symbol or digit in token, and POS tag. The first word among consecu-
tive tokens is considered as the first name, the last word as the last name, and
all the remaining words are treated together as the middle name.

3.2.4 Author email extraction

An email consists of a username, a sub-domain name, and a domain name.
In case of scholarly articles, usually, the usernames are written inside brack-
ets separated by commas and the bracket is succeeded by the sub-domain
and domain name. On manual analysis of a set of scholarly articles, we find
four different writing patterns, author1@cse.domain.com, {author1, author2,
author3}@cse.domain.com, [author4, author5, author6]@cse.domain.com and
[author7@cse, author7@ee].domain.com. Here, ‘cse’ and ‘ee’ represent sub-
domain instances. Based on these observations, we construct handwritten rules
to extract emails.

3.2.5 Author affiliation extraction

We use handwritten rules to extract affiliations. We employ heuristics such as
presence of country name, tokens like “University”, “Research”, “Laboratories”,
“Corporation”, “College”, “Institute”, superscript character, etc.

3.2.6 Section header and body text extraction

We employ CRF model to label section headings. Differentiating features (the
first token of the chunk, the second token, avg. boldness of the chunk, avg.
font-size, Arabic/Roman/alpha-enumeration, etc.) are extracted from chunks
to train the CRF.

3.2.7 URL extraction

We extract URLs using a single regular expression described below:

http[s]?://(?:[a-zA-Z]|[0-9]|[\$-_@.&+]|[!*\(\),]|(?:\%[0-9a-fA-F][0-9a-fA-F]))
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3.2.8 Footnote extraction

Most of the footnotes have numbers or special symbols (like asterisk etc.) at the
beginning in the form of a superscript. Footnotes have font-size smaller than
the surrounding text and are found at the bottom of a page – the average font
size of tokens in a chunk and y-coordinate were used as features for training the
CRF. Moreover, footnotes are found in the lower half of the page (this heuristic
helped in filtering false positives).

3.2.9 Figure and table heading extraction

Figure and table heading (caption) extraction is performed after chunking. If
the chunk starts with the word “FIGURE”, “Figure”, “FIG.”, or “Fig.”, then the
chunk represents a figure heading. Similarly, if the chunk starts with the word
“Table” or “TABLE”, then the chunk represents a table heading. However, it
has been observed that table contents are also present in the chunk. Therefore,
we use a feature “bold font” to extract bold tokens from such chunks.

3.2.10 Bibliography extraction

The bibliography extraction task includes extraction of citation instances and
references. All the tokens succeeding the reference section are considered to
be part of references and further each reference is extracted separately. Again,
we employ handwritten rules to distinguish between two consecutive references.
On manual analysis, we found 16 unique citation instance writing styles (Table
3.1). We code these styles into regular expressions to extract citation instances.

3.2.11 Mapping tasks

• Connecting author name to email: In general, each author name
present in the author section associates with some email. OCR++ tries
to recover this association using simple rules, for example, the sub-string
match between username and author names, abbreviated full name as
username, the order of occurrence of emails, etc.

• Citation reference mapping: Each extracted citation instance is
mapped to its respective reference. Since, there are two different styles of
writing citation instances, indexed and non-indexed, we define mapping
tasks for each style separately. Indexed citations are mapped directly to
references with the index inside enclosed brackets. The extracted index is
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Table 3.1: Generic set of regular expressions for citation instance identifica-
tion. Here, AN represents author name, Y represents year, and I represent
reference index within citation instance.

Citation Format Regular Expression
<AN> et al. [<I>] ([A-Z][a-zA-Z]* et al[.][\string\d\{1,3\}])
<AN> [<I>] ([A-Z][a-zA-Z]* [\string\d\{2\}])
<AN> et al.<spaces> [<I>] ([A-Z][a-zA-Z]* et al[.][ ]*[\string\d\{1\}])
<AN> et al., <Y><I> ([A-Z][a-zA-Z]* et al[.],\string\d\{4\}[a-z])
<AN> et al., <Y> ([A-Z][a-zA-Z]* et al[.][,] \string\d\{4\})
<AN> et al., (<Y>) ([A-Z][a-zA-Z]* et al[.][,] (\string\d\{4\}))
<AN> et al. <Y> ([A-Z][a-zA-Z]* et al[.] \string\d\{4\})
<AN> et al. (<Y>) ([A-Z][a-zA-Z]* et al[.] (\string\d\{4\}))
<AN> and <AN> (<Y>) ([A-Z][a-zA-Z]* and [A-Z][a-zA-Z]*(\string\d\&{4\}))
<AN> & <AN> (<Y>) ([A-Z][a-zA-Z]* & [A-Z][a-zA-Z]*(\string\d\&{4\}))
<AN> and <AN>, <Y> ([A-Z][a-zA-Z]* and [A-Z][a-zA-Z]*[,] \d\{4\})
<AN> & <AN>, <Y> ([A-Z][a-zA-Z]* & [A-Z][a-zA-Z]*[,] \d\{4\})
<AN>, <Y> ([A-Z][a-zA-Z]*[,] \string\d\{4\})
<AN> <Y> ([A-Z][a-zA-Z]* \string\d\{4\})
<AN>, (<Y><I>) ([A-Z][a-zA-Z]*(\string\d\{4\}[a-z]*))
< multiple indices sepa-

rated by commas >
.*?[(.*?)]

mapped to the corresponding reference. Non-indexed citations are repre-
sented using the combination of the year of publication and author’s last
name.

3.3 Results and discussion

Following an evaluation carried out by [110], GROBID provided the best results
over seven existing systems, with several metadata recognized with over 90%
precision and recall. Therefore, we compare OCR++ against the state-of-the-
art tool GROBID. We compare results for each of the sub-tasks for both the
systems against the ground-truth dataset. The ground-truth dataset is pre-
pared by manual annotation of title, author names, affiliations, URLs, sections,
subsections, section headings, table headings, figure headings, and references
for 138 articles from different publishers. The publisher names are present in
Table 3.3. We divide the article set into training and test datasets in the ratio
of 20:80. Note that each of the extraction modules described in the previous
section also have separate training sample count, for instance, 6300 samples
have been used to train the title extraction. Also, we observe that both the
systems provide partial results in some cases. For example, in some cases, only
half of the title is extracted or the author names are incomplete. In order to ac-
commodate partial results from extraction tasks, we provide evaluation results
at the token level, i.e., what fraction of the tokens are correctly retrieved.
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Table 3.2: Micro-average F-score for GROBID and OCR++ for different
extractive subtasks.

Subtask
GROBID OCR++

Precision Recall F-Score Precision Recall F-Score
Title 0.93 0.94 0.93 0.96 0.85 0.90
Author first name 0.81 0.81 0.81 0.91 0.65 0.76
Author middle name N/A N/A N/A 1.0 0.38 0.55
Author last name 0.83 0.82 0.83 0.91 0.65 0.76
Email 0.80 0.20 0.33 0.90 0.93 0.91
Affiliation 0.74 0.60 0.66 0.80 0.76 0.78
Section headings 0.70 0.87 0.78 0.80 0.72 0.76
Figure headings 0.59 0.42 0.49 0.96 0.75 0.84
Table headings 0.77 0.17 0.28 0.87 0.74 0.80
URLs N/A N/A N/A 1.0 0.94 0.97
Footnotes 0.80 0.42 0.55 0.91 0.63 0.77
Author-email 0.38 0.24 0.29 0.93 0.44 0.60

Table 3.2 presents comparative results for GROBID and OCR++. It shows that
in terms of precision, OCR++ outperforms GROBID in all the sub-tasks. Recall
is higher for GROBID for some of the metadata extraction tasks. In OCR++,
since title extraction depends on the first extracted chunk from section extrac-
tion, the errors in chunk extraction lead to a low recall in title extraction. A
similar problem results in lower recall in author name extraction. Due to the
presence of a variety of white space length between author first, middle and
last name in various formats, we observe low recall overall in author name ex-
traction subtasks. We also found that in many cases author emails are quite
different from author names resulting in lower recall for author-email mapping
subtask. OCR++ outperforms GROBID in the majority of the structural infor-
mation extraction subtasks in terms of both precision and recall. We observe
that GROBID performs poorly for table heading extraction due to the intermin-
gling of table text with heading tokens and unnumbered footnotes. A similar
argument holds for the figure heading as well. URL extraction feature is not
implemented in GROBID, while OCR++ extracts it very accurately. Similarly,
poor extraction of non-indexed footnotes resulted in a lower recall for footnote
extraction subtask.

Similarly, Table 3.3 compares GROBID and OCR++ for different publishing
formats. Here the results seem to be quite impressive with OCR++ outper-
forming GROBID in almost all cases. This demonstrates the effectiveness and
robustness of using generic patterns and rules used in building OCR++. As our
system is more biased towards single and double column formats, we observe
lower performance on three column formats, e.g., CHI. Similarly, non-indexed
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Table 3.3: Micro-average F-score for GROBID and OCR++ for different
publishing styles.

Publisher
GROBID OCR++

Precision Recall F-Score Precision Recall F-Score
IEEE 0.82 0.61 0.70 0.9 0.69 0.78
ARXIV 0.75 0.63 0.68 0.91 0.73 0.81
ACM 0.69 0.49 0.58 0.89 0.71 0.79
ACL 0.89 0.59 0.71 0.91 0.79 0.85

SPRINGER 0.78 0.6 0.68 0.85 0.63 0.72
CHI 0.13 0.20 0.16 0.5 0.36 0.42

ELSEVIER 0.58 0.6 0.59 0.82 0.74 0.78
NIPS 0.82 0.68 0.74 0.83 0.72 0.77
ICML 0.6 0.6 0.6 0.59 0.54 0.56
ICLR 0.49 0.55 0.52 0.67 0.52 0.59
JMLR 0.58 0.55 0.56 0.86 0.83 0.85

sections format show less performance than indexed sections format.
Since citation instance annotation demands a significant amount of human

labor, we randomly select eight PDF articles from eight different publishers
from ground-truth dataset PDFs. Manual annotation produces 328 citation
instances. We also annotate references to produce 187 references in total.
Table 3.4 shows performance comparison for bibliography related tasks. As de-
picted from Table 3.4, OCR++ performs better for both citation and reference
extraction tasks. GROBID does not provide Citation-Reference mapping, which
is an additional feature of OCR++.

Table 3.4: Micro-average accuracy for GROBID and OCR++ bibliography
extraction tasks.

GROBID OCR++
Precision Recall F-Score Precision Recall F-Score

Citation 0.93 0.81 0.87 0.94 0.97 0.95
Reference 0.94 0.94 0.94 0.98 0.99 0.98

Citation-reference N/A N/A N/A 0.94 0.97 0.95

Next, we investigate whether better formatting styles over the years lead to
higher precision by the proposed tool. Also, we compare OCR++ with GROBID
in terms of processing time.
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3.3.1 Effect of formatting style on precision

We select International Conference on Computational Linguistics (COLING) as
a representative example to understand the effect of evolution in formatting
styles over the years on the accuracy of the extraction task. We select ten
random articles each from six different years of publications. OCR++ is used
to extract the title for each year. Figure 3.3 presents title extraction accuracy
for each year, reaffirming the fact that the recent year publications produce
higher extraction accuracy due to better formatting styles and advancement
in converters from Word/LaTeX to PDF. We also notice that before the year
2000, ACL anthology assumes that PDFs do not have embedded text, resulting
in a lower recall before 2000.

1986 1990 1994 2004 2008 2010
Year

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Precision
Recall
F-score

Figure 3.3: Title extraction accuracy calculated at six different years for
COLING.

3.3.2 Processing time

To compare the processing times, we conducted experiments on a set of 1000
PDFs. The evaluation was performed on a single 64-bit machine, eight core,
2003.0 MHz processor and CentOS 6.5 version. Figure 3.4 demonstrates com-
parison between processing time of GROBID and OCR++, while processing
some PDF articles in batch mode. There is significant difference in the exe-
cution time of GROBID and OCR++, with OCR++ being much faster than
GROBID for processing a batch of 100 articles.

3.3.3 User experience study

To conduct a user experience study, we present OCR++ to a group of re-
searchers (subjects). Each subject is given two URLs: 1) OCR++ server URL
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Figure 3.4: Comparison between batch processing time of GROBID and
OCR++.

and 2) Google survey form10. A subject can upload any research article in PDF
format on the server and visualize the output. In the end, the subject has to
fill in a response sheet on the Google form. We ask subjects questions related
to their experience such as, (a) which extraction task did you like the most?,
(b) have you found the system to be really useful? (c) have you used similar
kind of system before?, (d) do you find the system slow, fast or moderate?, (e)
comments on the overall system experience, and (f) drawbacks of the system
and suggestions for improvements.

A total of 30 subjects participated in the user experience survey. Among the
most liked sub-tasks, title extraction comes first with 50% of votes. Affiliation
and author name extraction tasks come second and third respectively. All the
subjects found the system to be very useful. Only two of the subjects had used
a similar system before. As far as the computational speed is concerned, 50%
subjects found the system performance to be fast while 33% felt it be moderate.
Table 3.5 presents detailed summary of survey.

Even though, OCR++ is trained on Computer Science datasets, we claim that
the proposed features are sufficiently general and can potentially extract infor-
mation from non-CS research articles too. However, fine-tuning experiments
such as detection of several sub-sections such as background, results, conclu-
sions, keywords, etc. within abstract section in Biomedical documents will lead
to better domain-specific extraction.

10http://tinyurl.com/juxq2bt
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Table 3.5: Detailed summary of the survey.

Total participants 30
Time-period 18-01-2016 – 21-01-2016
Most liked task Title extraction
Second most liked task Affiliation extraction
Third most liked task Author name extraction
Performance speed (in %) Fast-50, Moderate-33.33, Slow-13.33
Similar system used before 2 participants
OCR++ useful All participants

1. "Excellent work ! One of the best
projects I’ve ever seen."
2. "The results shown are quite accurate.
Might work on improving the speed of the
entire process."

Constructive comments 3. "The system is no doubt good. But the
section parts should be more elaborated."
4. "I would prefer more data in a chunk,
especially in the introduction and abstract
so that I could get a better idea of the ma-
terial."
5. "All the fields being extracted may not
be necessary for a particular user. Please
provide an option to keep only parts of the
metadata as desired by a user."

Survey URL http://tinyurl.com/juxq2bt

3.4 Use cases

3.4.1 Curation of dataset links

With the community experiencing a push toward reproducibility of results, the
links to datasets in the research papers are becoming very informative sources
for researchers. Nevertheless, to the best of our knowledge, we do not find any
work on automatic curation of dataset links from the conference proceedings.
With OCR++, we can automatically curate dataset related links present in
the articles. In order to investigate this in further detail, we aimed to extract
dataset links from the NLP venue proceedings. We ran OCR++ on four NLP
proceedings, ACL 2015, NAACL 2015, ACL 2014, and ECAL 2014, available in
PDF format. We extract all the URLs present in the proceedings. We then filter
those URLs which are either part of Datasets section’s body or are present in the

http://tinyurl.com/juxq2bt
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footnotes of Datasets section, along with the URLs that consist of one of the
three tokens: datasets, data, or dumps. Table 3.6 presents statistics over these
four proceedings for the extraction task. From the dataset links thus obtained,
precision was computed by the human judgement as to whether a retrieved
link corresponds to a dataset. One clear trend we saw was the increase in
the number of dataset links from the year 2014 to 2015. In some cases, the
retrieved link corresponds to project pages, tools, researcher’s homepage, etc.,
resulting in lowering of precision values.

Table 3.6: Proceedings dataset extraction statistics. Article count repre-
sents a total number of articles present in the proceedings. Total links and
dataset links correspond to a total number of unique URLs and a total
number of unique dataset links extracted by OCR++ respectively. Preci-
sion measures correct number of dataset links.

Venue Year Articles count Total links Dataset links Precision
ACL 2015 174 345 38 0.74

NAACL 2015 186 186 18 0.50
ACL 2014 139 202 16 0.50
EACL 2014 78 141 12 0.67

3.4.2 Sectionwise citation distribution

Citation instance count plays a very important role in determining the future
popularity of a research paper. An article’s text is distributed among several
sections. Some sections have more fraction of citations than the rest. In
the second use case, we plan to study the sectionwise citation distribution.
Sectionwise citation distribution refers to how citations are distributed over
multiple sections in the article’s text. This is an important characteristic of the
citations and has recently been used for developing a faceted recommendation
system [30]. We group specific sections to five generic sections, Background,
Datasets, Method, Result/Evaluation, and Discussion/Conclusion. Table 3.7
shows an example mapping from specific to generic section names. Note that
this mapping can be changed as per the requirement. Figure 3.5 shows citation
distribution for article dataset consisting of the 138 articles mentioned earlier.
A maximum number of citations are present in the method section, followed by
background and discussion and conclusion. Result section comprises the least
number of citations.
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Table 3.7: Specific to generic section mapping.

Generic section Specific sections
Background Introduction, Related work, Background
Method Methodology, Method specific names
Result/Evaluation Results, Evaluation, Metrics
Discussion/Conclusion Discussion, Conclusion, Acknowledgment

Background Method Results Conclusion
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Figure 3.5: Sectionwise citation distribution in article dataset.

3.5 Deployment

The current version of OCR++ is deployed at our research group server11. The
present infrastructure consists of single CentOS instance12. We have made the
entire source code available in the public domain13.

3.6 Summary of the chapter

We develop framework for knowledge extraction from scholarly articles. Our
contributions in this chapter can be summarized as below:

1. We develop an open-source information extraction framework for scientific
articles using generic patterns present in various publication formats.

2. We extract metadata information, section information, and bibliography
related information along with two mapping tasks, author and email map-
ping and citations to reference mapping.

3. Despite OCR errors and the great difference in the publishing formats,
the framework outperforms the state-of-the-art systems by a high margin.

11CNeRG. http://www.cnergres.iitkgp.ac.in
12OCR++ server. http://www.cnergres.iitkgp.ac.in/OCR++/home/
13Github: https://github.com/mayank4490/OCR-plus-plus
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Mining performance comparisons

to rank scholarly articles

This chapter is devoted to our second objective - mining performance com-
parisons to rank scholarly articles. Here, we develop framework that extracts
experimental performance comparisons from comparative tables.

4.1 Introduction

Comparison against best prior art is critical to publishing experimental research.
With the explosion of online research paper repositories like arXiv and the fre-
netic level of activity in some research areas, keeping track of the best techniques
and their reported performance on benchmark tasks has become increasingly
challenging. Leaderboards, a tabular representation of the performance scores
of some of the most competitive techniques to solve a scientific task, are now
commonplace. However, most of these leaderboards are manually curated and
therefore take a while to emerge. The resulting latency presents a barrier to en-
try of new researchers and ideas, trapping “wisdom” about winning techniques
to small coteries, disseminated by word of mouth.

4.1.1 Limitations of conventional information
extraction

The ordering of competing techniques in a leaderboard depends on a large
number of factors, including the task being solved, the data set(s) used, the
experimental conditions, and the choice of performance metrics. Further, there

39



40 Chapter 4. Mining performance comparisons to rank scholarly articles

(a)

BM25 tfidf LM
(Dirichlet)

LM
(JelinekMercer)

DataFusionMethod

0 20

0 22

0 24

0 26

0 28

0 30

0 32

0 34

0 36

M
A
P

max mean3 mean5 combmnz rr

BM25 tfidf LM
(Dirichlet)

LM
(JelinekMercer)

DataFusionMethod

0 25

0 30

0 35

0 40

0 45
M
R
R

BM25 tfidf LM
(Dirichlet)

LM
(JelinekMercer)

DataFusionMethod

0 10

0 11

0 12

0 13

0 14

0 15

0 16

P
@
5

BM25 tfidf LM
(Dirichlet)

LM
(JelinekMercer)

DataFusionMethod

0 30

0 35

0 40

0 45

0 50

N
D
C
G
@
10
0

DocumentCentricStrategies

(b)

Figure 4.1: Examples of challenging performance extraction cases. (a) Com-
parative charts and tables embedded together in a single figure [156].
(b) Multiple comparative subplots with multi-color bars representing base-
line papers [39].

are often tradeoffs between various competing metrics, such as recall vs. preci-
sion, or space vs. time. In fact, an accurate extraction in conjunction to all the
context details like the data sets used, the sampling protocols, the hyperparam-
eters used, the performance metrics and their reporting units (percentage or
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fraction) is almost impossible. We argue that conventional table and quantity
extraction [26, 147] is neither practical, nor sufficient, for leaderboard induc-
tion. Figure 4.1 illustrates two difficult performance extraction cases [156, 39].
Figure 4.1(a) shows a combination of comparative charts and tables embedded
together in a single figure. Figure 4.1(b) shows multiple comparative subplots
with multi-color bars representing baseline papers.

4.1.2 Table citations

A practical way to work around the difficult extraction problem is to focus
on the relatively cleaner and more structured parts of a paper, e.g., tables.
Performance numbers are very commonly presented in tables. A prototypical
performance table (Figure 4.2) has a first column1 that records the name of
a competing system or algorithm, along with a citation. Each subsequent
column is dedicated to some performance metric. The rows make it simple
to associate performance numbers with specific papers. In recent years, tables
with citations (here, named table citations) and performance summaries have
rapidly become popular. Experimental outcomes are also often expressed as
graphs and charts. There are systems [91, 42, 6, 149] that extract tabular data
from graphs and charts. Using these in our system is left for future work.

4.1.3 Performance improvement graphs

We digest a multitude of tables in different papers into a novel performance
improvement graph. Each edge represents an instance of comparison be-
tween two papers, labeled with the ID of the paper where the comparison is
reported, the metric (e.g., recall, precision, F1 score, etc.) used for the com-
parison, and the numeric values of the metric in the two papers. Note that
every individual performance edge is extracted from a table with citations to
other papers. Each such extracted edge is noisy. Apart from the challenge of
extracting quantities from tables and recognizing their numeric types [26, 147],
there is no control on the metric names, as they come from an open vocabulary
(i.e., the column headers are arbitrary strings). Processing one table is a ‘micro’
reading; we must aggregate these ‘micro’ readings into a satisfactory ‘macro’
reading on an edge connecting two papers. We propose several reasonable edge
aggregation strategies to simplify and featurize the performance improvement
graph, in preparation for ranking papers.

1A transposed table style is easily identified with simple rules.
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Figure 4.2: Sample performance numbers in a table with citations [19]. Each
row corresponds to a competing algorithm or system, which is associated
with a paper cited (green highlighted link) from that row. Each column
represents a performance metric.

4.1.4 Ranking papers using table citation
tournaments

Ranking sports teams into total orders, on the basis of the win/loss outcomes
of a limited number of matches played between them, has a long history
[87, 50, 144]. We adapt two widely-used tournament solvers and find that they
are better than some simple baselines. However, we can further improve on
tournament solvers using simple variations of PageRank [129, 181] on a graph
suitably derived from the tournament. Overall, our best ranking algorithms are
able to produce high-quality leaderboards that agree very well with various man-
ually curated leaderboards. In addition, using a popular list of papers spanning
27 different areas of Computer Science, we show that our system is able to
produce reliable rankings of the state-of-the-art papers. We also demonstrate
that commercial academic search systems like Google Scholar (GS)2 and Se-
mantic Scholar (SS)3 cannot be used for discovering leaderboards, because of
their emphasis on aggregate citations, which typically favors classic papers over
latest performance leaders.

2https://scholar.google.co.in/
3https://semanticscholar.org/
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The rest of the chapter is as follows. Section 4.2 presents examples of some
popular and well-maintained leaderboards. Section 4.3 presents motivating dis-
cussion to show the limits of conventional table information extraction systems.
Section 4.4 describes the arXiv’s Computer Science dataset and details step by
step extraction procedure for performance tournament graph construction. In
Section 4.5, we show how to construct performance tournament graphs. In the
subsequent Section 4.6, we present various schemes for ranking tournaments.
We present evaluation results in Section 4.7 and conclude in Section 4.8.

4.2 Emergence of leaderboards

Leaderboards are important resources in experimental areas of science. Experts
in an area are usually familiar with latest approaches and their performance. In
contrast, new members of the community and practitioners need guidance to
identify the best-performing techniques. This need is currently served by “or-
ganically emerging” leaderboards that organize and publish the names and the
performance scores of the best algorithms in a tabular form. Leaderboards tech-
nically depend on many parameters including task, data set, other experimental
settings, performance metrics, etc. Organic leaderboards are commonplace in
the area of Computer Science, as in many other applied sciences. Examples of
some popular and well-maintained leaderboards are noted in Table 4.4.

Table 4.1: Identification of leaderboard papers for the PASCAL VOC chal-
lenge.

Paper GS SS Our

Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation × × ×
Rethinking Atrous Convolution for Semantic Image Segmentation × × X
Pyramid Scene Parsing Network × × ×
Wider or Deeper: Revisiting the ResNet Model for Visual Recognition × × ×
RefineNet: Multi-Path Refinement Networks for High-Resolution Semantic Segmentation X × ×
Understanding Convolution for Semantic Segmentation × × X
Not All Pixels Are Equal: Difficulty-aware Semantic Segmentation via Deep Layer Cascade × × X
Identifying Most Walkable Direction for Navigation in an Outdoor Environment × × ×
Fast, Exact and Multi-Scale Inference for Semantic Image Segmentation with Deep Gaussian CRFs × × ×
DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs × X X
Laplacian Pyramid Reconstruction and Refinement for Semantic Segmentation X × X
High-performance Semantic Segmentation Using Very Deep Fully Convolutional Networks × × X
Higher Order Conditional Random Fields in Deep Neural Networks × × ×
Efficient piecewise training of deep structured models for semantic segmentation X X X
Semantic Image Segmentation via Deep Parsing Network × X X
Semantic Image Segmentation with Task-Specific Edge Detection Using CNNs and a Discriminatively Trained Domain Transform X × X
Pushing the Boundaries of Boundary Detection using Deep Learning × × X
Attention to Scale: Scale-aware Semantic Image Segmentation X X X
BoxSup: Exploiting Bounding Boxes to Supervise Convolutional Networks for Semantic Segmentation X X X
Learning Deconvolution Network for Semantic Segmentation X X X
Conditional Random Fields as Recurrent Neural Networks × × ×
Weakly- and Semi-Supervised Learning of a DCNN for Semantic Image Segmentation × × X
Bayesian SegNet: Model Uncertainty in Deep Convolutional Encoder-Decoder Architectures for Scene Understanding × × X
Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs × X X
Global Deconvolutional Networks for Semantic Segmentation × × ×
Convolutional Feature Masking for Joint Object and Stuff Segmentation × × ×
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The prime limitation of manually curated leaderboards is the natural latency
until the performance numbers in a freshly-published paper are noticed, ver-
ified, and assimilated into the leaderboards. This can induce delays in the
dissemination of the best techniques to non-experts. In this work, we present
development of information extraction system to extract labeled performance
tournament graphs from tables. This end-to-end system helps in automating the
process of leaderboard generation. The system is able to mine table citations,
extract noisy performance comparisons from these table citations, aggregate
the micro readings to a smooth macro reading and finally obtain rankings of
papers. In Table 4.1, we show an example leaderboard generated by our system
(details of the system to be discussed later in the subsequent sections) for the
PASCAL VOC Challenge4. We observe that our system is able to find many of
the papers present in this archival leaderboard. Traditional academic search sys-
tems like GS and SS do not do well in finding leaderboard entries; both GS and
SS returned only seven papers (see Table 4.1) in their top 50 results retrieved
for the query ‘semantic segmentation’. In general, these commercial systems
cannot be used for leaderboard identification since they mostly emphasize cu-
mulative citations rather than performance scores. Citations to a paper making
incremental improvements resulting in the best performance may never catch
up with the seminal paper that introduced a general problem or technique.

4.3 The limits of conventional table
information extraction

Performance displays are implicitly connected to a complex context developed
in the paper, including the task, the data set, choice of training and test folds,
hyperparameters and other experimental settings, performance metrics, etc.
Millions of reviewer hours are spent each year weighing experimental evidence
based on the totality of the experimental context. “Micro-reading” one table
at a time is not likely to replace that. Further beyond contextual ambiguities,
there are often tradeoffs between different metrics like space vs. time, recall
vs. precision, etc. In summary, leaderboard induction is not merely a matter of
accurately extracting performance numbers and numerically comparing them.
One way to mitigate the above challenges is to use relatively cleaner, structured
parts of the papers, e.g., single tables or single charts. We focus on tables as
our first-generation system. However, with advanced visual chart mining and
OCR [121, 5, 91], we can conceivably extend the system to charts as well.

4Similar results reproducing other leaderboards can be found in
https://goo.gl/YSu5CL
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(a) (b)

(c) (d)

Figure 4.3: Feasible cases of extraction of comparative tables. (a) Ex-
plicit reference to baseline papers [19]. (b) Baseline spanning multiple
columns [155]. (c) Baseline papers grouped together [74]. (d) Compari-
son across multiple data sets without reference to the metric [187].

Figure 4.3 shows some of the comparative tabular formats that allow for efficient
extraction.
We concentrate on increasing number of tables that also cite papers, which are
surrogates for techniques. Figure 4.4 shows the average number of citations in
a paper p that occur in tables, against the year of publication of p. Clearly,
there is a huge surge in the use of table citations in the last five years, which
further motivates us to exploit them for building our system.

4.4 Data curation

In this section, we present the dataset description and describe several prepro-
cessing and table citation extraction steps.

4.4.1 ArXiv dataset

We downloaded (in June 2017) the entire arXiv document source dump that
includes papers from nine fields — Physics, Mathematics, Computer Science,
Quantitative Biology, Quantitative Finance, Statistics, Electrical Engineering
and Systems Science, and Economics. For the current study, we restricted
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Figure 4.4: Average number of table citations made by an arXiv paper
between 2005 and 2017.

ourselves to the field of Computer Science because of rapid innovations and
ease of judging and interpretation of the results from our system. However, we
claim that the curation process is sufficiently general and can be easily extended
to non-CS research articles too. However, domain-specific fine-tuning will be
required such as edge orientation (described in Section 4.4.2), identification of
organic leaderboards for evaluation (described in Section 4.4.4), etc. Table 4.2
shows statistics of arXiv’s Computer Science papers. ArXiv accepts four dif-
ferent paper formats — (i) (La)TeX, AMS(La)TeX, PDFLaTeX, (ii) PDF, (iii)
PostScript, and (iv) HTML with JPEG/PNG/GIF images. However, arXiv man-
dates uploading the source of DVI, PS, or PDF articles generated from LATEX
code. This resulted in a large volume of papers (1,181,349 out of 1,297,992
papers) with source code.

4.4.2 Preprocessing and extracting table citations

In this section, we describe several preprocessing steps for bibliography and
table extraction from arXiv’s Computer Science collection. The curation process
mainly involves pattern matching tasks. We also leverage popular extraction
tool ParsCit [47] for title extraction from textual references. Our curation
process is divided into the following sub-tasks.

Reference extraction: Since arXiv does not run BibTeX in the auto-
TeXing procedure, the references can only be resolved by parsing the “.bbl”
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Table 4.2: General statistics about the arXiv dataset and Computer Science
collection. A large fraction (91%) of papers have LATEX code available. A
significant fraction of papers contain comparative tables with citations.

Fu
ll

Year range 1991–2017
Number of papers 1,297,992
Number of papers with LATEX code 1,181,349
Total fields 9

C
om

pu
te

r
Sc

ie
nc

e Number of papers 107,795
Year range 1993–2017
Total references 2,841,554
Total indexed papers 1,145,083
Total tables 204,264
Total table citations 98,943
Unique extracted metrics 14,947

files. Albeit, occasionally, references are embedded in “.bbl” format within the
“.tex” file itself. We, therefore, extract references from either “.bbl” or “.tex”
files. Since the bibliography styles are standard and quite limited in Computer
Science we were able to successfully extract all the major families like Bibitem,
Harvarditem, etc. Overall, we extracted 2,841,554 references.

Reference mapping: We use a combination of regular expressions and state-
of-the-art reference extraction framework ParsCit [47] to extract titles. ParsCit
uses several NLP features such as number or punctuation in the reference
string, token’s orthographic case, location within the text, etc. Overall, we
successfully extract 2,745,465 titles from 2,841,554 references (96.6%). Next,
we index the arXiv paper titles and extracted reference titles which resulted in
1,145,083 unique paper titles.

Table extraction: We utilize tabular environment for table extraction. We
successfully handle complicated writing styles like separate input table files,
multirow, multicolumn, etc. We extract 204,264 candidate tables from 51,392
arXiv papers.

Collecting table citations: Thanks to normative patterns for citing tables
in Computer Science papers, this step is pretty straight forward. There are
three dominant ways in which a citation can take place – explicit, implicit
non-self, and implicit self. In explicit citation, baseline papers are cited
using ‘\cite’ command within table cells. In implicit non-self citation, the
baseline paper is implicitly referred with some keyword. We look for the first
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appearance of these keywords within the main text of the paper. In implicit
self-citation, the explicit ‘\cite’ command is absent. Instead we look for a
certain keyword (say ‘X’) in popular and standard phrases like “We propose
X”, “This paper proposes X”, “We develop X”, etc.

Performance metrics extraction: In the majority of the cases, we find
that table citations and metrics are present in orthogonal locations, i.e., if
table citations are present in rows then evaluation metrics are mentioned in
columns and vice-versa.

Edge orientation: Metrics differ in what is defined as ‘improvement’: larger
recall, precision, F1, and transactions per second are better, while smaller
error, running time, and perplexity are preferred. This is currently hardwired
into our metric meta-data manually by orienting the edges of our performance
improvement graph.

In Section 4.7.1, we conduct extensive evaluation of each of the above extraction
tasks.

4.4.3 State-of-the-art deep learning papers

A representative example from the rapidly growing and evolving area of deep
learning is https://github.com/sbrugman/deep-learning-papers.
The website contains state-of-the-art (SOTA) papers on malware detec-
tion/security, code generation, NLP tasks like summarization, classification,
sentiment analysis etc., as well as computer vision tasks like style transfer, im-
age segmentation, and self-driving cars. This Github repository is very popular
and has more than 2,600 stargazers and has been forked 330 times. The repos-
itory notes 27 different popular topics shown in Table 4.3. The table also shows
that the SOTA papers curated by knowledgeable experts rarely find a place in
the top results returned by these two popular academic search systems – GS
and SS. To be fair, these systems were not tuned to find SOTA papers, but we
argue that this is an important missing search feature. As fields saturate and
stabilize, citations to “the last of the SOTA papers” may eclipse citations to
older ones, rendering citation-biased ranking satisfactory. But we again argue
that recognizing SOTA papers quickly is critical to researchers, especially new
comers and practitioners.

4.4.4 Organic leaderboards

We identify manually curated leaderboards that compare competitive papers on
specific tasks. The four popular leaderboards that we choose for our subsequent

https://github.com/sbrugman/deep-learning-papers
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Table 4.3: Recall of human-curated state-of-the-art (SOTA) deep learn-
ing papers within top-10 and top-20 responses from two popular academic
search engines (Google Scholar and Semantic Scholar). Both systems show
low visibility of SOTA papers.

Topics # SOTA GS SS
Top–10 Top–20 Top-10 Top-20

Code Generation 7 0 0 0 0
Malware Detection 3 0 0 0 0
Summarization 3 0 0 0 0
Taskbots 2 0 0 0 0
Text Classification 15 0 1 0 0
Question Answering 1 0 0 0 0
Sentiment Analysis 2 0 0 0 0
Machine Translation 6 1 1 0 1
Chatbots 2 0 0 0 0
Reasoning 1 0 0 0 0
Gaming 14 0 0 0 0
Style Transfer 6 1 3 2 2
Object Tracking 1 0 0 0 0
Visual Question Answering 1 1 1 1 1
Image Segmentation 15 0 1 0 1
Text Recognition 6 0 1 0 1
Brain Computer Interfacing 3 0 0 0 0
Self Driving Cars 2 1 1 1 1
Object Recognition 30 1 1 1 1
Logo Recognition 4 0 0 0 0
Super Resolution 5 0 0 0 1
Pose Estimation 4 0 0 0 0
Image Captioning 9 1 1 1 1
Image Compression 1 0 0 0 0
Image Synthesis 9 0 0 0 0
Face Recognition 8 0 0 1 1
Audio Synthesis 6 0 1 0 0
Total 166 6 (3.6%) 12 (7.2%) 7 (4.2%) 11 (6.6%)

experiments are (i) The Stanford Question Answering Dataset (SQuAD)5,
(ii) Pixel-Level Semantic Labeling Task (Cityscapes)6, (iii) VOC Challenge
(PASCAL)7, and (iv) MIT Saliency (MIT − 300)8. Each leaderboard con-
sists of several competitive papers compared against multiple metrics. For
example, the SQuAD leaderboard consists of 117 competitive papers com-

5https://rajpurkar.github.io/SQuAD-explorer/
6https://www.cityscapes-dataset.com/benchmarks/
7https://goo.gl/6xTWxB
8http://saliency.mit.edu/results_mit300.html
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pared against two metrics ‘Exact Match’ and ‘F1 score’. Table 4.4 describes
the four leaderboards in detail. The tasks mostly include topics from natu-
ral language processing (e.g., question answering) and image processing (e.g.,
semantic labeling, image segmentation, and saliency prediction).

Table 4.4: Four popular leaderboards for various tasks in image process-
ing and natural language processing. Tasks include question answering,
semantic labeling, image segmentation, and saliency prediction.

Name Papers Metrics

The Stanford Question Answering
Dataset (SQuAD)

117 Exact Match (EM),
F1 score

Pixel-Level Semantic Labeling Task
(Cityscapes)

76 Instance-level
intersection-over-
union (iIOU)

VOC Challenge (PASCAL) 96 Average Precision (AP)
MIT Saliency (MIT − 300) 77 AUC, Similarity (SIM)

4.5 Performance improvement graph

In this section, we describe how to construct Performance improvement graphs.
We also present several methods to process the raw performance improvement
graph.

4.5.1 Raw performance improvement graph

The performance improvement graph G(V,E,M) is a directed graph between
a set of research papers V that are compared against each other. Here, M
represents the set of all the evaluation metrics. Edge between two papers
(A,B) (see Figure 4.5) is annotated with four-tuple (M1,v1,v2,P ), whereM1 ∈
M , v1 and v2 represent metric values for lower and higher performing papers
respectively. P denotes the paper that compared A and B. The directionality
of an edge e (e ∈ E) is determined by the performance comparison between two
endpoints. The paper with lower performance points toward better performing
paper. Figure 4.5 shows a toy example of the construction of a raw performance
improvement graph from an extracted table.
One table provides just one noisy comparison signal between two pa-
pers/techniques. Although table citations allow us to make numerical com-
parisons, there is no guarantee of the same data set or experimental conditions
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Figure 4.5: First table extraction step toward performance tournament
graph construction. (a) An example table present in paper P comparing
three methods, A, B and C, for two evaluation metrics, M1 and M2. (b)
Unique citations to the methods as well as the evaluation metrics used are
extracted. (c) an abstract performance tournament graph is constructed.
Each directed edge corresponds to an improvement reported by the desti-
nation node over the source node, and is denoted by a four tuple — metric
name, lower metric value, higher metric value and ID of citing paper (which
might be one of the papers being compared).

across different tables, leave alone different papers. Therefore, we process the
raw performance improvement graph in two steps:

Local sanitization: All directed edges connecting a pair of papers in the raw
performance improvement graph are replaced with one directed edge in the
sanitized performance improvement graph. This is partly a denoising step,
described through the rest of this section.

Global aggregation: In Section 4.6, we present and propose various meth-
ods of analyzing the sanitized performance improvement graph to arrive at a
total order for the nodes (papers) to present in a synthetic leaderboard.

4.5.2 Sanitized performance improvement graph

Relative edge improvement distribution: One unavoidable characteristic
of the raw performance improvement graph is the existence of noisy edges from
incomparable or botched extractions. We define the relative edge improve-
ment (REI) as

Im(u, v) = 100
(
um−vm
vm

)
(4.1)

where (u, v) represents a directed edge from paper u to v; um and vm denote
performance scores of paper u and v respectively against a metric m. As
described in the previous section, vm is lower than um.
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Figure 4.6: Distribution of improvement scores from four leaderboards de-
scribed in Table 4.4.

Figure 4.6 shows the distribution of REIs from four leaderboards described in
Table 4.4. These improvement scores are computed by considering all pairs of
papers present in the respective leaderboards. We note that less than 0.5%
of the edges have REI above 100%. In contrast, manual inspection of vari-
ous erroneous edges revealed that their REI was much larger. Therefore, we
sanitize the raw performance improvement graph by pruning edges having im-
provement scores larger than 100%. This simple thresholding yielded graphs
as clean as by using supervised learning (details omitted) to remove noisy edges.

Sanitizing multi-edges: A pair of paper can be compared in multiple tables,
resulting in (anti-) parallel edges or multi-edges. Every comparison creates a
directed edge with different tuple value. Two directed edges are termed as anti-
parallel if they are between the same pair of papers, but in opposite directions.
Whereas, two directed edges are said to be parallel if they are between the
same pair of papers and in the same direction. In Figure 4.5(c), two parallel
edges exist between papers B and C and two anti-parallel edges exist between
papers A and B.
Multiple strategies can be utilized to summarize and aggregate multi-edges into
a clean tournament graph. We consider the following variations. Note that all
of these are directed graphs. In each case, we discuss if and how a directed
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edge (i, j) is assigned a summarized weight.

• UNW — Unweighted Graph The simplest variant preserves the di-
rected edges without any weights. This is equivalent to giving a weight
of 1 for each of these directed edge (i, j), if there is any comparison.

• ALL — Weighted Graph (Total number of comparisons) This
variation uses the total number of comparisons between two papers pi and
pj as the weights of the directed edge. Thus, each time an improvement
is reported, it is used as an additional vote to obtain the edge weight.

• UNQ — Weighted Graph (Unique number of metric compar-
isons) This variation uses the unique number of metrics for which pj
improves upon pi as the edge weight. The intuition for this construc-
tion is that improvements over multiple metrics should be given a higher
weight.

• SIG – Sigmoid of actual improvements on edges This variation
takes into account the sigmoid value of the actual improvement score.
If paper u having a score of um on a specific metric m, improves upon
paper v which has a score of vm in the same table and same metric, we
compute the improvement score using Equation 4.1. We then pass this
score through a sigmoid function of the form:

sigmoidm(u, v) =
1

1 + e−Im(u,v)
(4.2)

To combine the multiple improvement scores of u over v on different
metrics and, thereby, obtain the edge weights, we use the following two
techniques.

MaxWe set the weight of the edge pointing from v to u as the maximum
of all the sigmoid values of the improvement scores across the different
metrics.

Average We set the weight of the edge pointing from v to u as the
average of all the sigmoid values of the improvement scores across the
different metrics.

Dummy winner and loser nodes: In the tournament ranking literature that
we shall discuss in the next section, the most prominent factor that guarantees
convergence is that the tournament must be connected. However, performance
tournament graphs are mostly disconnected due to extraction inaccuracies, in-
complete article collection, etc. Therefore, we introduce a dummy node that
either wins or loses over all other nodes in the graph. A dummy node has a
suitably directed edge to every other node.
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4.6 Mining sanitized performance
improvement graphs

In this section, we explore several ranking schemes to select the most competi-
tive papers by analyzing the sanitized performance graph. We begin with basic
baselines, then explore and adapt the tournament literature, and finally present
adaptations of PageRank-style algorithms. Solving an incomplete tournament
over n teams means to assign each team a score or rank inducing a total order
over them, and presents a natural analogy with incomplete pairwise observa-
tions. Tournament literature tries to extrapolate the anticipated outcome of a
match between teams i and j (which was never played, say) in terms of the
statistics of known outcomes, e.g., i defeated k and k defeated j.

4.6.1 Sink nodes

One way to be robust to numeric scores is to regard each table as comparing
some papers, a pair at a time, and inserting an edge from paper p1 to paper
p2 if the table lists a better (greater or smaller depending on metric) number
against p2 than p1. In such a directed graph, sink nodes that have no out-links
are locally maximal. Thus, the hunt for leaders may be characterized as a hunt
for sink nodes. We do not expect this to work well either because our graphs
contain so many biconnected components, thanks to papers being compared
on multiple metrics.

4.6.2 Cocitation

An indirect indication that a paper has pushed the envelope of performance
on a task is that it is later compared with many papers. We can capture this
signal in a graph where nodes are papers, and an edge and its reverse edge
(both unweighted) are added between papers p1 and p2 if they are cited by any
paper. Edges in both directions are added without considering the numbers
extracted from the tables.

4.6.3 Linear tournament

As described earlier, incomplete tournament presents a natural analogy to per-
formance comparisons. Redmond et al. [144] started with an incomplete tour-
nament matrix M where mij = mji is the number of matches played between
teams i and j. mmm = (mi) where mi =

∑
jmij is the number of matches
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played by team i. Abusing the division operator, let M̄ = M/mmm denote M
after normalizing rows to add up to 1.
Of the mij matches between teams i and j, suppose i won rij times and j won
rji = mij−rij times. Then the dominance of i over j is dij = rij−rji and the
dominance of j over i is dji = rji−rij = −dij. Setting the dominance of a team
over itself as zero in one dummy match, we can calculate the average dominance
of a team i as d̄i =

[∑
j dij

]/[∑
jmij

]
, and this produces a reasonable

ranking of the teams to a first approximation, i.e., up to “first generation” or
direct matches. To extrapolate to “second generation” matches, we consider all
(i, k) and (k, j) matches, which is given by the matrix M2. Third generation
matches are likewise counted inM3, and so on. David et al. [50] showed that a
meaningful scoring of teams can be obtained as the limit limT→∞

∑T
t=0 M̄

t · d̄dd,
where d̄dd = (d̄i).

4.6.4 Exponential tournament

The exponential tournament model [87] is somewhat different, and based on
a probabilistic model. Given R = (rij) as above, it computes row sums
ρi =

∑
j rij. Let ρρρ = (ρi) be the empirically observed team scores. Again,

we can sort teams by decreasing ρi as an initial estimate, but this is based
in an incomplete and noisy tournament. Between teams i and j there are
(latent/unknown) probabilities pij + pji = 1 such that the probability that i
defeats j in a match is pij. Then the MLE estimate is pij = rij/mij. Jech [87]
shows that there exist team ‘values’ vvv = (vi) such that

∑
i vi = 0 and

ρi =
∑
j

mijpij =
∑
j

mij

1 + exp(vj − vi)
. (4.3)

Here M and ρρρ are observed and fixed, and vvv are variables. Values vvv can be
fitted using gradient descent. Once the matrix PPP = (pij) is thus built, it gives a
consistent probability for all possible permutations of the teams. In particular,∏

j pij gives the probability that i defeats all other teams (marginalized over all
orders within the other teams j). Sorting teams i by decreasing

∏
j pij is thus

a reasonable rating scheme.

4.6.5 PageRank

PageRank computes a ranking of the competitive papers in the (suitably aggre-
gated) tournament graph based on the structure of the incoming links. We uti-
lize standard PageRank implementation9 to rank nodes in the directed weighted

9https://networkx.github.io
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tournament graph. Consider a directed edge (u, v) with w(u, v) as edge weight.
Let O(v) be out-neighbors of node v and I(u) be in-neighbors of node u.
PageRank score PRt+1(u) of a paper u at (t+ 1)th iteration can be computed
as:

PRt+1(u) = α
∑
v∈I(u)

PRt(v)
w(v, u)∑

i∈O(v) w(v, i)
+

1− α
n

. (4.4)

Here α is a damping factor that is usually set to 0.85, with uniform teleport 1/n,
where n denotes total papers in the tournament graph. We run this weighted
variant of PageRank on each induced tournament graph corresponding to each
query. Candidate response papers are ordered using PR values. These scores
can also be used for tie-breaking sink nodes.

4.7 Experimental evaluation

In this section, we evaluate experiments described in the previous section.

4.7.1 Extraction performance

Table 4.5 reports extraction accuracies of extractive sub-tasks (described in
Section 4.4.2) in terms of micro-precision and micro-recall. For first three
subtasks — reference extraction, reference mapping, and table extraction, we
sample 20 random articles from entire ArXiv’s Computer Science collection and
manually evaluate them. For the next two subtasks — collecting table citations
and performance metric extraction, we sample 20 random articles that consist
of at least one comparative table and manually evaluate them. All subtasks
performed exceptionally well, especially in terms of recall.

Table 4.5: Performance of five extractive subtasks.

Micro-precision Micro-recall

Reference extraction 0.95 1.0
Reference mapping 0.91 0.91
Table extraction 0.90 1.0
Collecting table citations 0.95 0.78
Performance metric extraction 0.93 0.82
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4.7.2 Ranking state-of-the-art papers

Table 4.6 shows comparisons between Google Scholar (GS), Semantic Scholar
(SS), and several ranking variations implemented in our testbed. Recall@10,
Recall@20, NDCG@10, and NDCG@20 are used as the evaluation measures,
averaged over the 27 topics shown in Table 4.3. Since our primary objective is
to find competitive prior art, recall is more important in case of Web search,
where precision at the top (NDCG) is paid more attention.
Given the complex nature of performance tournament ranking, our absolute
recall and NDCG are modest. Among naive baselines, sink node search led to
generally worst performance, which was expected. The numeric comparison is
slightly better, but not much.
GS and SS are mediocre as well. Despite the obvious fit between our problem
and tournament algorithms, they are surprisingly lackluster. In fact, tournament
algorithms lose to simple cocitation. PageRank on unweighted improvement
graphs performs beyond cocitation. However, the “sigmoid” versions of PageR-
ank improve upon the unweighted case, almost doubling the gains beyond GS
and SS, and are clearly the best choice.

4.7.3 Leaderboard generation

In this section, we demonstrate our system’s capability to automatically gener-
ate task-specific leaderboards. We utilize four manually curated leaderboards
for this study. Automatic leaderboard generation procedure is divided into two
phases: (i) obtaining a list of candidate papers relevant to a task and (ii)
ranking candidate papers by utilizing the best ranking scheme.

• Obtaining list of candidate papers relevant to a task: We, first,
obtain a list of candidate papers relevant to a given task. We utilize
textual information such as title and abstract to find relevant candidate
papers. These candidate papers are further ranked by utilizing best per-
forming PageRank schemes (described in Section 4.7.2). We consider
top-50 ranked results and show comparisons between Google Scholar
(GS), Semantic Scholar (SS), and top-3 high performing PageRank vari-
ations against two evaluation measures — Recall@50 and NDCG@50 —
in Table 4.7. As expected, GS and SS performed poorly for all of the
four leaderboards. Pagerank variations have almost double the gains be-
yond GS and SS and are clearly the best choice. The actual leaderboards
generated can be accessed from the link provided in footnote 4.

• Ranking candidate papers to generate leaderboard: Next, we com-
pute the correlation between ranks in generated leaderboards with the
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Table 4.6: Comparison between several ranking schemes. Recall@10, Re-
call@20, NDCG@10, NDCG@20 measures are averaged over the 27 tasks
(queries). Best performer is PageRank on aggregated tournament. Co-
citation is surprisingly close, better than all other schemes. Tournament
estimators performed worse than GS and SS. Numeric comparison and sink
node search performed worse. ALL: Weighted graph (total number of com-
parisons); UNQ: Weighted graph (unique number of comparisons); UNW:
Unweighted directed performance graph; SIG: Sigmoid of the actual per-
formance improvement.

Ranking scheme Top–10 Top–20
Recall (%) NDCG Recall (%) NDCG

Systems
Google Scholar (GS) 7.38 0.073 10.48 0.086
Semantic Scholar (SS) 7.84 0.065 10.08 0.074

Linear tournament
Dummy Winner

A
LL 5.08 0.05 13.22 0.069

Dummy Loser 3.81 0.039 13.17 0.063
Dummy Winner

U
N
Q 1.5 0.014 3.76 0.023

Dummy Loser 1.5 0.014 4.0 0.024
Dummy Winner

SI
G 2.21 0.024 6.71 0.036

Dummy Loser 2.21 0.027 6.71 0.039
Exponential tournament
Dummy Winner

A
LL 4.34 0.04 10.5 0.058

Dummy Loser 2.93 0.027 5.9 0.038
Dummy Winner

U
N
Q 4.34 0.038 9.99 0.054

Dummy Loser 3.32 0.032 5.18 0.036
Dummy Winner

SI
G 4.34 0.04 10.5 0.058

Dummy Loser 2.93 0.027 5.9 0.038
PageRank
UNW 16.51 0.135 18.77 0.141
ALL 15.20 0.141 18.24 0.147
UNQ 15.47 0.143 18.24 0.147
SIG (Avg.) 16.78 0.151 18.77 0.155
SIG (Max.) 16.78 0.156 18.77 0.16

Sink nodes
ALL 4.76 0.048 4.76 0.048
UNQ 4.55 0.045 4.55 0.045
Dense cocitation 10.35 0.129 16.19 0.141
Numeric comparison 7.16 0.051 11.39 0.068

ground-truth ranks obtained from the organic leaderboards. Table 4.8
presents the Spearman’s rank correlation of rankings produced by PageR-
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Table 4.7: Recall@50 and NDCG@50 measures for four leaderboards. Green
cells indicate best scores and red cells indicate worst scores. Our PageRank
variants show considerably superior performance compared to GS and SS.

Leaderboard name GS SS PageRank UNW PageRank SIG (Avg) PageRank SIG (Max)
Recall (%) NDCG Recall (%) NDCG Recall (%) NDCG Recall (%) NDCG Recall (%) NDCG

SQuAD 0 0 3.57 0.014 14.29 0.075 17.86 0.085 14.29 0.069
Cityscapes 12.5 0.067 18.75 0.159 31.25 0.198 31.25 0.237 25.0 0.205
PASCAL 13.46 0.12 13.46 0.179 30.77 0.252 26.92 0.241 30.77 0.252
MIT − 300 21.43 0.115 7.14 0.036 21.43 0.222 21.43 0.217 21.43 0.228

ank variations, UNW, SIG (AVG), and SIG (Max), with the corresponding
ground-truth rankings for the four leaderboards. SQuAD shows highest
correlation (0.94 for F1 and 0.88 for EM) for all of the three PageRank
variations. CityScapes and PASCAL also exhibit impressive correlation
coefficients for all the PageRank variants. For the MIT − 300 leader-
board, while the correlation coefficient is decent for the SIM metric it
is a bit low for the AUC metric. The reason for the low correlation is
existence of multiple weakly connected components. A local winner in
one component is affecting the global ranks across all components.

Table 4.8: Spearman’s rank correlation of rankings produced by UNW,
SIG (AVG), and SIG (Max) with the corresponding ground-truth rankings
for the four leaderboards for various tasks in image processing and natural
language processing.

Name Nodes Metric UNW SIG (AVG) SIG (MAX)

SQuAD 9 F1 0.94 0.94 0.94
EM 0.88 0.88 0.88

CityScapes 7 iIoU 0.69 0.7 0.7
PASCAL 26 AP 0.79 0.57 0.57

MIT − 300 9 AUC 0.23 0.23 0.23
SIM 0.54 0.45 0.45

4.7.4 Effect of graph sanitization

As described in Section 4.5.2, graph sanitization is a necessary preprocessing
step. In this section, we present several real examples that resulted in greater
visibility of state-of-the-art after sanitization. As representative examples, we
consider two tasks “image segmentation” and “gaming” to show how graph
sanitization results in noise reduction in the performance improvement graphs.
We find several state-of-the-art papers that performed poorer than a compet-
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itive paper with high improvement score (>700%). This anomaly resulted in
the poorer visibility of the state-of-the-art papers in top ranks. However, after
sanitization, the visibility gets improved. Table 4.9 shows four example high
improvement edges whose removal resulted in the higher recall of the state-of-
the-art papers. First two cases represent “image segmentation” papers. Next,
two cases represent “gaming” papers. We observe that back-edges (anti-parallel
edges) may not necessarily be present in such example scenarios.

Table 4.9: Effect of graph sanitization. The first two edges correspond to
the task of “image segmentation” and the last two to the task of “gaming”.
Removal of these edges resulted in higher visibility of SOTA papers.

Source Destination Improvement % Back-edge (Y/N)

1511.07122 1504.01013 775 Y
1511.07122 1511.00561 6597 Y
1611.02205 1207.4708 4012.3 N
1412.6564 1511.06410 928.8 N

4.7.5 Why is PageRank better than tournaments?

PageRank variations performed significantly better than tournament variations.
Several assumptions of tournament literature do not hold true for scientific
performance graphs; for instance, existence of disconnected components is a
common characteristic of performance graphs. Unequal number of comparisons
between a pair of papers in performance graphs is another characteristic that
demarcates it from the tournament settings. We observe that in majority of
task-specific performance graphs, tournament-based ranking scheme is biased
toward papers with zero out-degrees. Therefore the tournaments mostly con-
verge to the global sinks; in fact, we observe more than half of the tournament
based top-ranked papers are sink nodes. This is the reason the recall and the
NDCG reported in Table 4.6 for the above two methods are pretty close.

4.8 Summary of the chapter

We develop framework for experimental performance comparisons extraction
from scholarly articles. Our contributions in this chapter can be summarized as
below:
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1. We introduce performance tournament graphs that encode information
about performance comparisons between scientific papers.

2. Currently, these tournaments are extracted from tables with citations and
performance numbers. The process of extracting tournaments is designed
to be robust, flexible, and domain-independent, but this makes our labeled
tournament graphs rather noisy.

3. We present a number of ways to aggregate the tournament edges and a
number of ways to score and rank nodes on the basis of this incomplete
and noisy information.

4. We adapt two widely-used tournament solvers and find that they are
better than some simple ranking baselines. However, we can further
improve on tournament solvers using simple variations of PageRank on a
graph suitably derived from the tournament.

To the best of our knowledge, ours is the first framework to extract performance
information from scholarly articles. It should be trivial to incorporate our system
into freely accessible scholarly search systems.





CHAPTER5
Modeling scientific growth

through relay-linking
phenomenon

This chapter is devoted to our third objective - modeling scientific growth
through relay-linking phenomenon.

5.1 Introduction

How do actors in a evolving network pass from prominence [38, 130, 166]
to obsolescence [51, 93, 106, 131, 139, 168, 171] and obscurity? Is aging
intrinsic, or informed and influenced by the local network around actors? And
how does the aging process affect properties of social networks, specifically,
the tension between entrenchment of prominence (aka “rich gets richer” or the
Matthew effect) vs. obsolescence? These are fundamental questions for any
evolving social network, but particularly well-motivated in bibliometry. With
rapidly growing publication repositories, understanding the networked process
of obsolescence is as important to the emerging field of academic analytics1 as
understanding the rise to prominence.
We propose several measurements on evolving networks that constitute a tem-
poral bucket signature summarizing the coexistence between entrenchment and
obsolescence. Temporal bucket signature denotes a stacked histogram of
the relative age of target papers cited in a source paper. Natural social networks
(e.g., various research communities) show diverse and characteristic temporal

1https://en.wikipedia.org/wiki/Academic_analytics
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bucket signatures. Surprisingly, many standard models of network evolution —
and even obsolescence — fail to fit the temporal signatures of real bibliometric
data. We present a family of relay-linking models that are the central con-
tributions of this chapter, roughly speaking: to add a citation to a new paper,
choose an existing paper p0, but if it is too old, walk back along a citation link
to p1 and (optionally) repeat the process. We call this hypothesized process
triad uncompletion and the associated generative model relay-linking. These
proposed relay-linking models or network influenced models of aging mimic
temporal signatures of real networks better than state-of-the-art aging models.
We establish this with temporal bucket signatures and two associated novel
measures: distance and turnover. Distance represents closeness (measured
by L1 norm) between real and generated network’s temporal bucket signatures.
Whereas turnover measures decay of incoming citations as we move from one
decade to the next decade. We also propose age gap count histograms
to represent citation age distribution. Similar to temporal bucket signature,
standard models fail to fit age gap count histogram of real data as well. We
establish this fitness using another novel metric termed as divergence. Di-
vergence represents closeness (measured by KL divergence) between real and
generated network’s age gap count histograms. As we shall see, simple models
with O(1) parameters find it very challenging to pass all these stringent tests
for temporal fidelity. In sharp contrast to existing work, we avoid modeling ag-
ing as governed by network-exogenous rules or distributions (whose complexity
scales with the number of nodes). Our models have only two global parameters
shared over all nodes.
In Section 5.2, we describe a large-scale time-stamped bibliographic dataset.
Section 5.3 presents empirical evidences of co-existence of obsolescence and
entrenchment, leading to the development of the temporal bucket signatures
described in Section 5.4. Section 5.5 presents description of classical evolution
models and our simulation framework. In Section 5.6, we present evidences
of relay and propose several relay-linking models. We compare proposed relay-
linking models in Section 5.7. Section 5.8 presents an interesting application of
the temporal bucket signatures. Section 5.9 summarizes the current chapter.

5.2 Dataset

Investigating the questions raised in this chapter requires rich trajectories of
time-stamped network snapshots. However, such intricately detailed datasets
are rare, even while there is an increasing number of new repositories being built
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(a) (b)

(c) (d)

Figure 5.1: (a) For a paper written in y ∈ [1970, 2010] (x-axis), we plot
the fraction of papers it cites (y-axis) that are older than y − t years, for
t = 10, 15, 20 (red, green, black). (b) We picked a fixed set P of 100 most
cited papers written in 1971–1975 (red) and 1981-1985 (green). For papers
written in years y ∈ [1975, 2010] (x-axis), we plot the fraction (y-axis) of
citations made to papers in P . Unlike (a), this shows a steep decrease.
(c) Replacing popular papers P with a random set R of papers written in
1971–1975 (red) and 1981–1985 (green) reduces the absolute y-axis but not
the relative decay. (d) Enlarging R to 500 random papers also has no effect
on the relative rate of decay.

and updated regularly2. Fortunately, Microsoft Academic Search3 (MAS) pro-
vides an ideal platform for our study. MAS data includes paper titles, reconciled
paper IDs, year of publication, publication venue, references, citation contexts,
related field(s), abstract and keywords, author(s) and their affiliations [31]. We
have filtered papers from full dataset (Table 5.1). The filtered dataset consists
of papers published between 1961–2010 and have at least one outlink or one
inlink (to filter isolated nodes or missing data). We call this filtered dataset as
the Ground Truth dataset (GT). For each simulation initialization, we create
a warmup dataset from GT having papers published between 1961–1970. De-

2http://snap.stanford.edu/ is a prominent example.
3http://academic.research.microsoft.com

http://snap.stanford.edu/
http://academic.research.microsoft.com
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tailed description and the role of warmup data in the simulation framework can
be found in Section 5.5.2.

Table 5.1: General statistics about the full Computer Science dataset from
Microsoft Academic Search. Filtered and warmup dataset are subsets of
full dataset.

Full Filtered Warmup
Year range 1859–2012 1961–2010 1961–1970

Number of papers 2,281,307 1,702,471 9,568
Number of citations 27,527,432 15,791,272 7,312

To ensure that our proposed temporal signatures are generally applicable, we
also experimented with papers from the biomedical domain. In this study, we
use biomedical dataset that consists of 801,252 research articles4 published
between 1996-2014. All our evaluations are based on extensive experiments
with the Computer Science domain dataset5.

5.3 Entrenchment and obsolescence

Preferential attachment models without aging [88, 100] predict that older pa-
pers get more entrenched and their rate of citation acquisition can only go up.
Verstak et al. [166] provide the support that as a cohort older papers are thriv-
ing: more recently written papers have a larger fraction of outbound citations
targeting papers that are older by a fixed number of years. However, there is
plenty of evidence [33, 168, 171] that aging counteracts entrenchment. This
apparent contradiction is readily resolved by realizing that the number of pa-
pers older by a fixed number of years is growing rapidly. But the real value of
the study (Sections 5.3.1 and 5.3.2) is that it leads us to the definition of new
signatures of evolving networks (Section 5.4).

5.3.1 Fraction of citations to ‘old’ papers

Suppose that papers in our corpus, published in a year y, make Cy citations in
all to older papers. Of these, say Ct citations go to papers that were published
before year y − t, for t = 10, 15, 20. Figure 5.1(a) plots the quantity Ct/Cy
against y, similar to the setup of Verstak et al. [166]. The plot is consistent

4http://www.ncbi.nlm.nih.gov/pmc/tools/ftp
5We have a comparable evaluation on biomedical papers which we omit due to space

constraints.

http://www.ncbi.nlm.nih.gov/pmc/tools/ftp
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with their claim: the fraction of citations to older papers is indeed increasing
over the years y for all values of t.
However, Figure 5.1(b) paints a different picture. For each year range 1971–
1975 and 1981–1985, we choose 100 most cited (through 2010) papers P .
Then, for other papers written in a year y ∈ [1975, 2010], we plotted the
fraction of citations out of those papers that go to P . Clearly, this fraction
decreases over time. In place of popular papers, how do random papers fare?
Figures 5.1(c,d) show that the relative shape of decay remains stable when
random paper sets of sizes 100 and 500 are picked as the targets.

5.3.2 Fraction of citations to papers in 10-year age
buckets

Figures 5.1 suggests a natural and compact way to summarize citation statistics
organized by age. We group papers into buckets. Each bucket includes papers
published in one decade6. Then, for each bucket, we plot as a stacked bar-
chart, the fraction of citations going to that same bucket as well as all previous
buckets. Figure 5.2(a) shows the result. We note the following:

• The fraction of citations from a bucket to itself (shown as the bottom
purple, yellow, red and blue bars in successive columns) decreases over
time and those to all older buckets increase over time. This is consistent
with Verstak et al.

• However, if we consider papers in a bucket as targets, the citations they
receive decreases over the years. For instance, papers written in 1971–
1980 (purple bars over successive columns) received 70.5% of the citations
in that decade (purple) but this number reduces to 29.2, 6.4, 2.8% in
successive decades. Similar decay is seen for the following buckets (yellow,
red) as well.

We see similar effects in Figure 5.2(b), except that papers written in 1996–2000
became obsolete much more rapidly (yellow bar) compared to papers written
in 2001–2010, so there is less stationarity of the obsolescence process in the
biomedical domain compared to computer science. Thus, such bar charts si-
multaneously validate Verstak et al. [166] and also show aging of paper cohorts,
and are a succinct signature of the balance between entrenchment and obso-
lescence.

6Any suitable bucket duration can be used. We experiment with several bucket sizes,
a majority of them produced similar results.
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Figure 5.2: (a) Citation distribution across 10-year buckets for computer
science dataset. Each vertical bar represents a decade of papers. Within
each bar, colored/textured segments represent the fraction of citations going
to preceding decades. The bottommost segment is to the same decade, the
second from bottom to the previous decade, etc. On one hand, the volume
of citations to the current decade (bottommost segment) is shrinking to
accommodate “ old classics” (entrenchment). On the other hand, any given
color/texture shrinks dramatically over decades (most papers fade away).
(b) Citation distribution of the biomedical dataset. Papers written in 1996–
2000 became obsolete much more rapidly.

5.4 New signatures of evolving networks

We start with some basic notation. Time t proceeds in discrete steps (for
publications, often measured in years). Sometimes we will bucket time into
ranges like decades. We study an evolving graph Gt, which comprises the
node set Vt and edge set Et. Nodes are denoted by u, v, etc. Edges (i.e.,
citations) once added, are never removed. Also, in our bibliometric setting,
edges emanating from a node v all “appear” when node v itself appears, at
birth time tv, but this assumption can be relaxed. We shall use GT as the
shorthand for ground-truth data (see Section 5.2).
We introduce several natural ways to observe dynamic networks to better un-
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GT – 2.70 –
PA 4.98 0.97 0.77
CP (pcopy = .5) 1.97 1.53 0.18
WYY (λ = .11) 1.67 2.59 0.13

Figure 5.3: Temporal bucket signatures comparing ground truth (GT), pref-
erential attachment (PA) [8, 88], copying (CP) [100], and WYY [171]. Each
bucket represents a decade. Ground truth turnover is 2.70. For others, dis-
tance, turnover and divergence values are shown in the accompanying table.
Clearly, only WYY has even a remote similarity to ground truth.

derstand the interplay between entrenchment and obsolescence.

5.4.1 Age gap count histogram

When new paper u, born at time tu, cites an older paper v, born at tv, that
citation link spans an age gap of tu − tv ≥ 0. (Depending on the granularity
of measuring time, tu = tv may or may not be possible.) In case of dynamic
documents where u can add citations (dropping citations is rare), we can take
tu to be the citation creation time, rather than the birth time of u. In citation
data, gap g is usually expressed in whole years. For any value of g,

∑
(u,v)∈E

{
1, if tu − tv = g, and
0, otherwise

(5.1)

is the number of links that span an age gap of g. As we shall see later, age gap
count histograms reveal some salient dynamics of graph evolution.
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Divergence

Suppose we observe age gap histograms H from real data. Each simulated
model gives age gap histograms H̃. We assess divergence between two his-
tograms (H̃ and H) by measuring Kullback-Leibler divergence. More precisely,

divergence(H||H̃) =
∑
g∈H

H(g) log
H(g)

H̃(g)
(5.2)

A simulated model is closer to real data, if divergence→ 0.

5.4.2 Temporal bucket signature

Suppose we collect birth times into buckets of temporal width T (e.g., T
may be 10 years). Suppose our corpus of papers P is thus partitioned into
P1, P2, . . . , PN , based on their publication date. We pad this with sentinel
bucket P0 for all papers before P1. Each source paper ps ∈ Pj may cite target
papers pt ∈ Pi, where i ≤ j. Let the total number of citations from papers in
Pj to papers in Pi be C(i, j) (row=cited, column=citing). Let column sums
C(j) =

∑
iC(i, j) be the total number of outbound citations from papers in

Pj. Let F (i, j) = C(i, j)/C(j) be the fraction of outbound links from papers
in Pj that target papers in Pi. The temporal bucket signature is defined as the
matrix F (i, j) : i ≤ j, i.e.,

F =


F (0, 1) F (0, 2) · · · F (0, N)
F (1, 1) F (1, 2) · · · F (1, N)

0 F (2, 2) · · · F (2, N)
... 0

. . . ...
0 0 0 F (N,N)

 , (5.3)

where each column adds up to 1. We propose two intuitive scalar summaries
of temporal bucket signatures.

Distance

Suppose we observe F from real data. We also fit a model which, upon sim-
ulation, gives bucket signature F̃ . We propose to assess how closely F̃ ap-
proximates F by measuring the average row-wise L1 distance between their
corresponding columns. More precisely,

distance(F, F̃ ) =
N∑
j=1

[
j∑
i=0

|F (i, j)− F̃ (i, j)|

]
. (5.4)
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The higher the distance value, lower will be the closeness of approximation,
and vice versa. Note that there is no assumption of stationarity in this defini-
tion. Communities can be in volatile and transient stages of obsolescence while
replacement rates in other communities can be stable.

Turnover

Another quantity of interest summarizing F or F̃ is a notion of decay of the
height of a segment of a given color from one column to the next, in the
sequence F (i, i), F (i, i+1), F (i, i+2), . . . Specifically, the ratio F (i, j)/F (i, j+
1) (which is usually more than 1) represents how sharply citations to papers in
Pi decreases from year j to year j + 1. Because we are interested in a ratio,
we aggregate these via a geometric mean:

turnover(F ) =

[
N−1∏
j=1

j∏
i=0

F (i, j)

F (i, j + 1)

] 2
(N+2)(N−1)

(5.5)

A high value of turnover indicates more rapid obsolescence. Turnover can be
measured on both F and F̃ . In the later sections, we will relate the quantities
we have defined with other established properties of real networks.

5.4.3 Optimization

We assume that the temporal bucket signature for GT is F and the age gap
histogram is H. Similarly, for each simulated model, we denote F̃ and H̃ as
temporal bucket signature and age gap histogram respectively. Note that, F̃
and H̃ are dependent on two model parameters λ and Θ (see Figure 5.4). We
use d(·), t(·) and f(·) as shorthand for distance(·), turnover(·) and divergence(·)
respectively. To obtain optimal set of parameters for each model, we need to
solve the following optimization problem:

minimize
λ,θ

d(F, F̃ ) ∗
(
|t(F̃ )− t(F )|

)
∗ f(H||H̃) (5.6)

Here, |t(F̃ )− t(F )| represents absolute difference between GT’s turnover (e.g.,
2.70 for one of our data sets), and relay-link model’s turnover. Other combina-
tions such as weighted sums can be considered, but product has the advantage
that we do not need to manually balance typical magnitudes of the parts. To
our knowledge, the above problem does not admit a tractable continuous op-
timization procedure. Therefore, we perform grid search and choose values for
model parameters for each proposed model.
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5.5 Classical evolution models and simulation
results

The first generation of idealized network growth models [8, 134] generally fo-
cused on a “rich gets richer” (preferential attachment or PA) phenomenon with-
out any notion of aging. This was followed by the vertex copying model [100].
There has been more recent work [55, 72, 168, 171, 186] on modeling age within
the PA framework. We will review and evaluate some of these in Section 5.5.2.

5.5.1 Classical models

Standard preferential attachment (PA)

In Albert et al.’s classical PA model [8, 88], at time t, a new paper would cite
an old paper p, which currently has degree kp(t), with probability Π(p, t) that
is proportional to kp(t):

Π(p, t) ∝ kp(t) (5.7)

In their idealized model, one new paper was added at every time step, but this
is easily extended to mimic and match the growing observed rate of arrival of
new papers. Moreover, the number of outbound citations from each new paper
can also be sampled to match real data.
If paper p arrives at time tp, it is not hard to obtain a mean-field approximation
to the degree of p at time t ≥ tp:

k̃p(t) ∝
√
t/tp. (5.8)

This expression suggests that age is a monotone asset, never a liability, for any
paper.

Copying model (CP)

The copying model [100] is characterized by a network that grows from a small
initial graph and, at each time step, adds a new node (paper) pn with k edges
(citations) emanating from it. Let pr be a “reference” paper chosen uniformly at
random from pre-existing papers. With a fixed probability (the only parameter
of the model), each citation from pn is assigned to the destination of a citation
made by pr, i.e., pn “copies” pr’s citations. Neither PA nor copying has a notion
of aging.
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Ageing model (WYY)

Wang, Yu and Yu [171] proposed modeling age within the PA framework. The
probability of citing at time t a paper p that was born at time bp, while propor-
tional to its current degree as in PA, decreases exponentially with its age:

Π(p, t) ∝ kp(t) exp
(
−λ(t− bp)

)
, (5.9)

where λ > 0 is the single global parameter controlling the attention decay
rate, estimated from some “warmup” data. Similar models are motivated by
the measurements by Leskovec et al. [106]. Note, in order to avoid the huge
computational overhead associated with updating probability values for each
new entry, we approximate by only updating the attachment probability value
once in each year. For the first 20 years, the approximate version is (a) extremely
close to the original version (less than .05 L1 distance) and (b) slightly closer
to the GT than the original version thus giving this baseline a small additional
advantage.

5.5.2 Simulation protocol and results

We simulate the models described above for 40 years (1971–2010) and compare
the results with GT (turnover = 2.70). Warmup data is the subset of GT
generated between 1961–1970 (detailed statistics is present in Section 5.2).
Warmup data consists of papers published between 1961–1970 along with the
citation links formed between them. We initiate each simulation model from
warmup data. The warmup data can be called as the “train data”. Starting from
the year 1971, for each subsequent year, we introduce as many papers in the
system as the publication count of that year estimated from GT. Each incoming
paper is accompanied by nine outlinks (average number references estimated
from GT). This data, generated through our simulation models between 1971–
2010, can be called as “test data”. We simulate CP with copying probability =
0.5 (after grid search on all possible probability values) since the product of the
three observables, i.e., distance, turnover, and divergence (a function similar to
Equation 5.6) is the least at this value of the probability. Similarly, for WYY,
we obtain through grid search λ = 0.11 that results in the lowest product of
the three observables.
Results are shown in Figure 5.3. PA fits observed temporal bucket profiles very
poorly. The distance score is very large (4.98). Neither PA nor copying has
a notion of aging. Therefore, it is not surprising that CP also does not fit
observed temporal bucket signatures well. The distance score is 1.97. WYY
performed best at λ = 0.11 with distance = 1.67. As for turnover, WYY’s
turnover (2.59) is closest to that of GT (2.70).
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5.5.3 Other related models

Forest Fire

Relay-linking has some superficial similarity to the forest fire model [107] and
earlier work on random walk and recursive search based attachment processes
[165]. But among many critical difference is the involvement of time and node
ages. In forest fire terminology, the relative birth times of candidate source and
target nodes strongly influence whether we prefer to ‘burn’ forward or backward
edges. To our knowledge, there is no similar temporally modulated version of
forest fire model that has demonstrated fidelity to bucket signatures, or age
gap count histograms.

Point processes

It is attractive to think of citations as events “arriving at a node/paper” ac-
cording to some temporal point process7. Focusing on one node, if H(t) is the
history of the event arrivals up to time t, then the conditional intensity function
is defined as

γ(t)dt := Pr(event in [t, t+ dt)|H(t)).

Specifically, if Hv(t) comprises the points of time tvi < t of past arrivals at
node v, then the Hawkes process [1] defines

γv(t) = av + bv
∑
tvi<t

exp(−|t− tvi|).

and provides two major benefits:

1. the exponential decay term elegantly captures temporal burstiness, and

2. given {tvi}, parameters av, bv can be estimated efficiently [11, 60].

While Hawkes process is most suited for repeated similar events (such as mes-
sages or tweets between two people), citation happens only once between two
papers. Work on coupling edge message events to network evolution itself is
rare, with notable exceptions [60]. In our case, citation arrivals at different pa-
pers are not independent events but coupled to global population growth rates
as well as network constraints (e.g., out-degree distribution). Given those con-
straints, Hawkes process provides no obvious benefits to inference or simulation.
Moreover, citations are often observed in (annual) batches, but Hawkes process

7https://en.wikipedia.org/wiki/Point_process

https://en.wikipedia.org/wiki/Point_process
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finds simultaneous arrivals impossible. We can model arrival times as hidden
and observe them in batches, but that involves a more complex EM procedure
[112] to marginalize over arrivals. Even if these hurdles can be overcome, we
have to estimate or sample av, bv for every node, just like WSB [168], which
results in too many parameters. Moreover, there is still no direct connection be-
tween declining citations and whether the network guides the diverted citations
to specific targets, which is the specific goal of relay-linking models.

5.6 Proposed relay-linking models

5.6.1 Evidence of citation stealing

The central hypothesis behind the relay linking model is as follows:

At a given point in time, an old popular paper p0 begins to lose
citations in favor of a relatively young paper p1 that cites p0.

There are a variety of intuitive reasons why relay-linking or relay-citing can
happen:

• p1 is a journal version of a conference paper p0,

• p1 refutes or improves upon p0, or

• p1 reuses data or a procedure in p0, and so on.

Table 5.2: Circumstantial evidence of relay-link: RW papers acquire more
citations than RL papers. Here, r is in RW or RL . Higher proportion of
papers belonging to RL have zero citation count than RW . Bold face text
represents that the mean of cumulative citation count of RW at base year
T is larger than the mean of RL. Also, RW papers show higher increasing
trend than RL papers.

Popularity
of cited
papers

#Papers #Papers
with
> 0 ci-
tations

%Papers
with
> 0 ci-
tations

Avg
#cita-
tions
to r

#Recent
papers
with in-
creasing
trend

%Recent
papers
with in-
creasing
trend

Cited
neigh-
bors with
decreas-
ing trend
(%)

Avg.
de-
crease
in me-
dian
values

RW ≥ 70 76082 60205 79.13 19.77 31749 41.72 48.06 5.69
RL ≤ 10 16257 2017 12.40 0.31 736 4.52 41.39 0.41

Unlike standard preferential attachment (PA), evidence for relay-linking can only
be circumstantial and in the aggregate, because the decision of p2 to select,



76 Chapter 5. Modeling scientific growth through relay-linking phenomenon

Table 5.3: Circumstantial evidence of relay-link: Papers that cite fading
papers gather citations at an accelerated pace. Bold face text represents
that the rate at which the citations are gained by the set of R′ papers is
higher compared to the set of RW \R′ papers.

RW R′ RW \R′
#papers
in PP

#papers
in F

Avg.
drop

Avg.
citation
count at
T

Avg.
citation
gain in
[T, T + δT ]

Per-
year
citation
gain

Avg.
citation
count at
T

Avg.
citation
gain
[T, T + δT ]

Year-wise
citation
gain

21621 4962 36.41 23.48 13.92 2.48 11.02 11.89 2.05

but then not cite p0, is never recorded in any form; we get to know only of the
recorded citation to p1. Here we produce such circumstantial evidence, in two
parts.
Fix a base time T (2005 in our experiments). Define popular papers PP as
those that have at least 70 cumulative citations as of T . Define obscure papers
PO as those that have at most ten cumulative citations as of T . Let recent
winner papers RW be those that make at least ten citations8 and at least 50%
are to papers in PP . Let recent loser papers RL be those that make at least
ten citations, and all are to papers in PO.

Do RW papers gain citations faster than RL? We now measure the
cumulative citations to each paper in RW and RL as of time T + δT (say after
five years) and can apply a standard test of the hypothesis that the mean of
RW is larger than the mean of RL (see Table 5.2).

Are RW papers stealing citations from PP papers? Now we focus on
a subset of PP : those whose rate of acquiring citations see a sharp (> 50%)
drop from [T − δT, T ] to [T, T + δT ]. Let this be fading papers F ⊂ PP .
Consider papers R′ ⊂ RW that cite papers in F , and their rate of acquiring
citations in [T, T + δT ]. We investigate if this population has a significantly
larger mean than a base population. Here the base population is set to the
papers RW \ R′. In Table 5.3 we observe that indeed the rate at which the
citations are gained by the set of R′ papers is higher compared to the set of
RW \R′ papers.

5.6.2 Model descriptions and results

Inspired by the above experiments, we propose in Fig. 5.4, a generic template
for all our relay-link models. tu is the birth time of u. The flexible policies/

8To eliminate noise in extracting citations.



5.6. Proposed relay-linking models 77

parameters are R, λ,Θ, D. R is either 1 (one-shot relay) or∞ (iterated relay).
D is either uniform, or as in PA, but restricted to I(u, t). The λ parameter
governs the time to initiate relaying while the Θ parameter governs the extent
of relaying. A higher value of λ leads to relaying of citations from source paper
soon after its publication and vice-versa. Similarly, Θ controls the intensity of
relaying; higher values of Θ lead to higher intensity of relaying. Note that,
standard PA can be achieved by keeping λ = 0. We will explore alternatives
for a few design choices and that will lead us to a few variations on the basic
theme.

Random relay-cite (RRC)

Our first model is obtained by setting R = 1 and D as the uniform distribution
over I(u, t). In words, we first pick a p0 to cite, then we toss a coin with head
probability = exp(−λT ), where T is the current age of the paper p0. If the
coin turns up tail, then again, we toss a coin with head probability Θ. With
coin turning up as head, we sample a paper v that links to p0 uniformly at
random and then cite v instead of p0. Effectively, p0 relays the citation to v.
This version of the model thus has two parameters λ and Θ.
We simulated the model with different values of (λ,Θ). Grid search led us
to the best value of (0.19, 0.9) as per the optimization function defined in
Equation 5.6. Figure 5.5 shows the temporal bucket signatures for this and the
other variants described below; the best distance, turnover and divergence that
RRC achieves are respectively 1.08, 2.70, and 0.03.

Preferential relay-cite (PRC)

In the preferential relay-cite model, R continues to be 1, but we depart from
the random relay-cite model in that D is no more a uniform distribution over
the papers in I(u, t). The probability of sampling v is proportional to its in-
degree, as in PA. Again, we simulated this model and performed a grid search
to obtain the best parameter values (λ,Θ) = (0.3, 0.9) as per the optimization
function in Equation 5.6. We obtained the best distance score of 1.86. The
corresponding turnover and divergence scores were found to be 2.11 and 0.16.

Iterated random relay-cite (IRRC)

In iterated random relay-cite model, we relax R to be able to follow the relay-cite
hypothesis iteratively. Thus, once a paper v has sampled a paper from I(u, t)
based on uniform distribution, we again toss a coin with head probability =
exp(−λT ′), where T ′ is the current age of the paper v. In case, tail turns up,
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1: for advancing time steps t do
2: for each paper pn newly added at time t do
3: for each citation (pn, ?) to fill do
4: choose old paper u using PA
5: for r = 1, 2, . . . do
6: T = t− tu
7: toss coin with head prob. exp(−λT )
8: if head or r > R: break
9: toss coin with head prob. Θ
10: if tail: break
11: let I(u, t) be papers that cite u
12: as of time t
13: choose v ∈ I(u, t) according to
14: a sampling distribution D
15: u← v
16: add (pn, u) as new citation

Figure 5.4: Relay-linking template.

we follow this process recursively. (λ,Θ) = (0.115, 0.8) gives the best distance
score of 0.60, turnover of 2.67 and divergence score of 0.012.

Iterated preferential relay-cite (IPRC)

In iterated preferential relay-cite model, once a paper v has sampled a pa-
per from I(u, t) based on PA, we again toss a coin with head probability =
exp(−λT ′), where T ′ is the current age of the paper v. In case, tail turns
up, we follow this process recursively. We simulated the model with different
parameter values, and found that λ = 0.19 and Θ = 0.8 gives the best distance
score of 0.72, turnover score of 2.70 and divergence score of 0.004.

5.6.3 Dependence on bucket size

Since divergence is computed from age gap count histograms, it does not de-
pend on the bucket size. For distance and turnover, we observed that our
observations are stable for bucket sizes 7, 8 and 9 years. For bucket sizes larger
than 10 years, the number of buckets is too small to make a fair comparison.



5.7. Comparison between models 79

Simulator (λ,Θ) D
is
ta
nc
e

Tu
rn
ov
er

D
iv
er
ge
nc
e

RRC (0.19, 0.9) 1.08 2.70 0.03
PRC (0.3, 0.9) 1.86 2.11 0.16
IRRC (0.115, 0.8) 0.60 2.67 0.012
IPRC (0.19, 0.8) 0.72 2.70 0.004

Figure 5.5: Temporal bucket signatures from ground truth data (GT), ran-
dom relay-cite (RRC), preferential relay-cite (PRC), iterated RRC (IRRC)
and iterated PRC (IPRC). λ and Θ were optimized separately for each vari-
ant using grid search. Ground truth turnover is 2.70. For others, distance,
turnover and divergence values are shown in the accompanying table. Note
the qualitatively better fit with ground truth compared to Figure 5.3.

5.7 Comparison between models

5.7.1 Temporal bucket signatures

Fig. 5.5 compares ground truth (GT) temporal bucket signatures against the
variations of relay-linking models described above. Three out of four relay-
linking models proposed above outperform the popular baseline models of net-
work evolution in terms of all the observables, i.e., distance, turnover and
divergence (see Figure 5.3 for detailed result obtained for the baseline mod-
els.) Further, note that IPRC outperforms all the other relay-linking models
in at least two out of the three observables and can be considered to be the
closest fit to GT. Therefore, in order to strengthen our results, we compare
age gap count histograms and degree distribution of IPRC (instead of other
relay-linking models) with the baseline models.
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5.7.2 Age gap count histograms

Fig. 5.6 shows the age gap count histograms defined in Equation 5.1 for various
simulators, compared with ground truth (over all time). Ground truth rolls
down steadily after an early peak at 2–3 years age gap. As expected, the PA
curve keeps going up, because aging is always an advantage. Surprisingly, but
indirectly corroborating degree distribution (as well as its temporal signature
in Figure 5.3), WYY does well in comparison, but its most likely gap is larger
compared to real data. IPRC fits GT’s decay best.
The model complexity of relay-linking is comparable to PA. Yet, we establish
that relay-linking is the closest to real networks in terms of divergence, distance,
and turnover.

Figure 5.6: Age gap count histograms. WYY is quite close to ground-truth,
but for its best choice of λ, its peak is still at too large a gap. IPRC’s decay
fits GT best. The divergence values are, PA: 0.77; WYY(λ = 0.11): 0.13;
IPRC (λ = 0.19,Θ = 0.8): 0.004.

5.7.3 Degree distribution

In Figure 5.7 we plot the degree distribution of the network obtained by simu-
lating IPRC. The figure shows that the distribution fits the GT quite well.
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Figure 5.7: Degree distributions of ground truth (GT) and various models
(PA,WYY,IPRC) at the best optimal parameters values.

5.8 Practical application

To get more insight into temporal bucket signatures, we apply these to a cross-
sectional study by sub-field and conference slices. The widely quoted impact
factor [69] (IF10) of a journal or conference is the average number of citations
to recent (last 10 years) articles published there. Table 5.4 shows the turnover
values we estimate against IF10 for the four conference subsets we chose. There
is a clear negative correlation i.e., communities with large turnover have low
IF10. Large turnover also seems associated with applied communities in a state
of more intense flux.

5.9 Summary of the chapter

Our contributions in this chapter can be summarized as below:

1. We give the first plausible network-driven models for obsolescence in the
context of research paper citations, based on a natural notion of relay-
linking.

2. Studying large bibliographic datasets, we also propose several novel and
stringent tests for temporal fidelity of evolving, aging network models.
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Table 5.4: Correlation between turnover and average value of 10-year im-
pact factor, over specific conferences as well as coherent sub-communities
of computer science. Note the negative correlation between turnover and
10-year impact factor. Communities with large turnover have low IF10.

Conference Name Turnover Avg. IF10
SIGMOD 3.97 3.50
VLDB,ICDE 4.52 2.79
SIGIR 5.61 2.77
ICML,NIPS 6.74 1.84
Data Mining, machine learning, artificial
intelligence, natural language processing
and information retrieval

3.32 0.63

Distributed and parallel computing,
hardware and architecture, real time and
embedded systems

3.31 0.74

Algorithms and Theory, Programming
Languages and Software Engineering

2.29 0.78

3. Traditional aging models do not pass these tests well, but our relay-linking
models do.

4. As an interesting application, we show that estimated turnover values
negatively correlate with impact factor (IF10) for the four conference
subsets we chose.

To the best of our knowledge, this is the first work that attempts to leverage
network-assisted link-relays to explain obsolescence in citation networks. Future
extensions could possibly lead to a formal analysis of properties of relay-linking
or tractable variations.



CHAPTER6
Estimating long-term scientific

impact

This chapter is devoted to our fourth objective - applications of curated scholarly
information. We present long-term scientific impact prediction as an interesting
application through two studies–

1. The role of citation context in predicting long-term scientific impact.

2. Impact of early citers on long-term scientific impact.

6.1 Introduction

Citation count of a publication is among the most commonly accepted metric
by the research community for evaluating the impact and quality of a research
article. Citation count refers to the number of citations received by an article
within a specified time-period [22]. Highly-cited works remain as one of the
most important criteria for the various organization (e.g. companies, univer-
sities and governments) to identify the best talents, especially at their initial
stages. An early estimate would help in identification of promising articles
that could accelerate research and dissemination of new knowledge. This has
motivated the interest in the field of future citation prediction [136, 182].
Prediction of future citation counts, however, is difficult because of the nature
and dynamics of citations [61, 70]. The citation ranges for the papers published
by the same authors or the same venues show a lot of variation. The same can
be said about the field of the papers as well. A recent study [34] has shown that

83
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all the scientific papers do not follow the same trajectory and found 6 different
citation patterns.
The existing works have used various venue and author-centric features, along
with the citation information from the initial years for the task of citation pre-
diction. Toward this objective, we conduct two important studies, as described
below –

6.1.1 The role of citation context in predicting
long-term scientific impact

In this work, we argue that the features extracted from the citation contexts can
be extremely helpful for the future prediction. Citation context refers to textual
descriptions of a given scientific paper found in other papers in the document
collection which cites it [9]. A citation context is, in principle, a set of sentences
where a paper is referred to. The intuition behind using the citation context
features comes from the hypothesis that citation contexts reflect the opinion of
the scientific community about the particular work. We show that even using
some very simplistic features extracted from the citation context can boost the
performance of a citation prediction system significantly.
We use a massive dataset consisting of more than 26 million citation contexts for
nearly 1.5 million research papers in the Computer Science domain, crawled from
Microsoft Academic Search (MAS)1. We extract two features from the citation
contexts – average countX (number of times a paper is cited within the same
article, averaged over all the citing papers) and average citeWords (number of
words within the citation context, averaged over all the citing papers). A high
value of countX implies that cited paper is referred multiple times by citing
paper and thus, cited paper might be quite relevant for citing paper. Similarly,
a high value of citeWords implies that cited paper has been discussed in more
details by citing paper and therefore, cited paper might be relevant for citing
paper. We show that these features are quite discriminative and exhibit different
trends not only for different citation ranges but also for the citation categories
identified in [34]. We then append these features along with various other
features in an earlier framework based on stratified learning [31]. Experimental
results show that addition of these two features gives a R2-correlation of 0.84,
0.81, and 0.78 toward predicting the citation count at 5, 7, and 9 years after
publication, improving the prediction accuracy by 8-10% on average over the
nearest baseline. Specifically, these features help in predicting the long-term
citation behavior of the research papers. We would like to stress here that
this study brings forth the tremendous potential of the content of a scientific

1http://academic.research.microsoft.com/
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article in predicting future citation counts; the huge success of only two very
simple content related features proposed here indicates that deeper analysis of
the content can lead to further significant improvements in the related areas of
research.
Section 6.2.1 describes the citation context dataset used for this experimen-
tal study. The two citation context features utilized for our study have been
described in Section 6.2.2. The citation prediction model has been described
in Section 6.2.3. The experiments to evaluate our system under different set-
tings have been reported in Section 6.2.4 along with a detailed comparison and
feature analysis. Finally, conclusions have been presented in Section 6.5.

6.1.2 Impact of early citers on long-term scientific
impact

Next, we aim to better understand the complex nature of the early citers (EC)
and study their influence on long-term scientific impact. EC represents the
set of authors who cite an article early after its publication (within 1–2 years).
We investigate three characteristic properties of EC and present an extensive
analysis to answer three interesting research questions:

• Do early citers influence the future citation count of the paper?

• How do early citations from influential authors impact the future citation
count compared to the non-influential ones?

• How do citations from co-authors impact the future citation count com-
pared to the others (influential as well as non-influential)?

We present a large-scale empirical study to answer these questions. We empiri-
cally show that early citations might not be always beneficial; in particular, early
citations from influential EC negatively correlates with the long-term scientific
impact of a paper. Motivated by the empirical observations, we incorporate
the EC features in a popular citation prediction framework proposed by Yan
et al. [182]. We discuss the prediction outcomes and show that our extended
framework outperforms the original framework by a high margin.
Section 6.3.1 presents detailed definitions of early citers. Section 6.3.2 describes
two datasets used for this experimental study. In Section 6.3.3, we present a
large-scale empirical study to answer these questions. Motivated by the empir-
ical observations, in Section 6.3.4, we incorporate the EC features in a popular
citation prediction framework proposed by Yan et al. [182]. In Section 6.3.5, we
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discuss the prediction outcomes and show that our extended framework outper-
forms the original framework by a high margin. Finally, conclusions have been
presented in Section 6.5.

6.2 The role of citation context in predicting
long-term scientific impact

6.2.1 Datasets

In this study, we use two Computer Science datasets, both crawled from Mi-
crosoft Academic Search (MAS)2. First dataset (bibliographic dataset) consists
of bibliographic information of papers, the title of the paper, a unique index
for the paper, its author(s), the affiliation of the author(s), the year of publica-
tion, the publication venue, references, citation contexts, the related field(s)3

of the paper, the abstract and the keywords of the papers [31]. Second dataset
(citation context dataset) consists of more than 26 million citation contexts
pre-processed and annotated with cited and citing paper information. Even
though, we leverage CS datasets for this study, the results are generally ap-
plicable. However, availability of such intricately detailed time-stamped and
rich bibliographic datasets in non-CS domains is rare. Table 6.1 details various
statistics for both the datasets.

Table 6.1: General information about the datasets.

D
at
as
et

I

Year range 1960-2010
Number of Computer Science fields 21
Number of publications 1,359,338
Number of authors 138,923
Avg. number of papers per author 5.43
Avg. number of authors per paper 2.40

D
at
as
et

II Number of citation contexts 26,197,440
Avg. number of citation contexts per paper 19.27
Avg. number of words per citation context 26
Number of papers having at least one citation context 1,279,104

The data crawled by Chakraborty et al. [31] had several inconsistencies that
were removed through a series of steps. First, few forward citations were re-
moved which point to the papers published after the publication of the source

2http://academic.research.microsoft.com
3Note that the different sub-branches like Algorithms, AI, Operating Systems etc.

constitute different “fields” of Computer Science domain.
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paper. These forward citations appear because there are certain papers that are
initially uploaded in public repositories (such as http://arxiv.org/) but accepted
later in a publication venue. Further, they considered only those papers pub-
lished in between 1970 and 2010 because this time period seemed to be most
consistent since majority of the articles published at that time period are avail-
able in the dataset. Only those papers are considered that cite or are cited by
at least one paper (i.e., isolated nodes with zero in-degree and zero out-degree
have been removed). An advantage of using this dataset is that the problem
arising due to the ambiguity of named-entities (authors and publication venues)
has been completely resolved by MAS itself, and a unique identity has been as-
sociated with each author, paper and publication venue. Some of the authors
were found missing in the information of the corresponding papers which were
resolved by the DOI (Digital Object Identifier) of the publications. We double
checked the filtered papers having the author and metadata information from
DOI and kept only the consistent ones. Some of the references that pointed to
such papers absent in the dataset (i.e., dangling references) were also removed.

Definition I: We will call a paper P cites paper C, if paper P refers to paper
C in the text. P is termed as citing paper while C is termed as cited paper.
P can refer to C at many places in the text. In our present work, we only
consider the sentence as citation context where the reference to the paper is
explicitly present.
For an example, Chakraborty et al. [31] cites Yan et al. [182] as
Recently, Yan et al. conduct two similar experiments [25, 26], to study features
covering venue prestige, content novelty and diversity and authors’ influence
and activity. They also account for the temporal dynamics by taking a recent
version of each feature calculated on a limited time window. To the best of
our knowledge, this is the latest and the most accurate future citation count
prediction model and therefore serves as the baseline system in this paper. We
conduct an extended examination of all these factors related to citation counts,
with many new features added.

Although the above context consists of four sentences, we only consider the
first sentence as the citation context since it explicitly refers to Yan et al. [182].

Definition II: countX for a cited paper C with respect to a citing paper P
is defined as the number of citation contexts, when a paper P cites paper C.
Citation context count for a paper C denotes the sum of countX from all the
citations for C.
Each paper has a specific citation context count. Figure 6.1 shows the distri-
bution of papers having specific citation context count in our dataset. Long
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tail depicts that many papers have less number of citation context count while
a small number of papers have high citation context count.

Figure 6.1: Distribution of citation context count in our dataset.

Definition III: citeWords for a cited paper C with respect to a citing paper
P is defined as the number of words in the citation context, when a paper P
cites paper C. If multiple papers are cited within the same citation context,
the number of words is equally divided among all the cited papers. If a paper is
cited multiple times within the same paper, citeWords is computed by summing
over the words in all the citation contexts.
In the next section, we discuss in detail how the average values of countX and
citeWords behave for papers with various citation ranges.

6.2.2 Average countX and citeWords

After identifying countX and citeWords as two features from the citation con-
texts, we study in detail as to whether these features are discriminative with
respect to the number of citations. To normalize with respect to various ranges
of citations, we only used the average values of countX and citeWords for a
publication in each year starting from its publication year.
As a working example of how these features are computed, Table 6.2 presents
citation contexts for paper P titled as “On Relaxed Dynamic Programming in
Switching Systems”, published in 2005. The first column gives the citer IDs,
which refer to MAS identifier for the papers citing paper P. Publication year
of the citing paper is shown in column 2. Column 3 notes the exact citation
context(s) in the citing paper for paper P. Below, we describe as to how the
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average countX and average citeWords features are computed for P over the
years.

Table 6.2: Example citation contexts for paper (P) titled as On Relaxed
Dynamic Programming in Switching Systems, published in 2005. Citer ID
represents MAS identifier of the paper citing paper P. Publication year
represents the year of publication of citing paper. Finally, context column
contains the citing sentence. There are several instances where a paper is
cited more than once in a citing paper. Also, a citing sentence might cite
more than one paper. Bold face text represents a cited paper reference.

Citer ID Publication
year

Context

5330841 2010 Our approach relies on the following result from relaxed
dynamic programming [12, 15], which is a straightforward
generalization of proposition [5, Proposition 2.4], cf. [7] for
a proof

6899965 2009 In [18, 19] a relaxed dynamic programming procedure is
proposed
The existence of a solution is assumed in [18,19], which is
different from the objective in this paper; to obtain a sub-
optimal solution only when the minimum does not exist

5179891 2009 Recently, this has been studied by Lincoln and Rantzer in
[11,17]

6006644 2009 Our approach relies on results on relaxed dynamic pro-
gramming [9], [13] already used in an MPC context in [7]
which we adapt to our variable control horizon setting

6413388 2008 Inequalities of such type have been used frequently in the
optimal control literature, however, a systematic study
seems to have performed only recently in [14, 18]
The approach we take in this paper relies on recently de-
veloped results on relaxed dynamic programming [14, 18]

5052733 2008 These general algorithms are also used to study switched
systems in [11], [12]

5433268 2007 Some are based on a newly elaborated condition of opti-
mality see e.g., [1], [2],[3], others are more related to semi-
classical approaches see e.g., [4], [5], [6], [7]

4971068 2007 A novel approach to overcome some of the difficulties men-
tioned above was recently proposed in [4], [5], [3], see also
[14] for examples from switching systems

12659162 2006 For further details on the theoretical foundations, the
reader is referred to [13]]
Further discussion of the implicit algorithm is given in [13]

50488928 2006 In a recent work, it is shown that the optimal control
problem can be reformulated as an approximate linear-
quadratic problem, whose complexity grows only polyno-
mially [10]
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Average countX

For a citation edge from paper Q to paper P (i.e., Q citing P ), countX denotes
the number of times paper P is cited in paper Q. A high value of countX implies
that paper P is cited multiple times by paper Q and thus, P might be quite
relevant for paper Q. Possibly, Q has cited P for its different aspects. Our
hypothesis is that if we consider all the papers citing a paper P and find the
average value of countX for P , it may serve as a very strong feature to measure
the importance of P .

Let us assume that the papers Q1, Q2, . . . , Qn are citing paper P for
N1, N2, . . . , Nn times respectively in the tth year after publication of P . We
define the average countX metric for paper P for the tth year as

average countX(P, t) =

∑n
j=1 Nj

n
(6.1)

Using the example in Table 6.2, average countX value for paper P for the
first year after publication (year 2006) can be calculated as:
average countX(P, 1) = 2+1

2
= 1.5. This is because there are two citing

papers in year 2006, one of which cites P twice within the same paper while
the other cites it only once.

Average citeWords

For a citation edge from paper Q to paper P , citeWords denotes the number
of words in the citation context(s), where P has been referred to. Since more
than one paper might be cited within the same citation context, the number of
words is divided among all the cited papers. Similar to countX, a high value of
citeWords implies that paper P has been discussed in more details by paper Q
and therefore, paper P might be relevant for paper Q. Dividing by the number
of papers cited within the citation context takes care of the fact that the words
in citation contexts have been used to describe multiple papers. Similar to
countX, our hypothesis is that finding the average number of words that other
papers use to describe P could be indicative of the importance of paper P .
Let us assume that paper P is cited by another paper Qi in m different citation
contexts, S1, . . . , Sm. For this citation edge, citeWords is computed as

citeWords(P,Qi) =
m∑
i=1

AW (Si, P,Qi) (6.2)

where AW (Si, P,Qi) denotes the average number of words used in sentence
Si to describe P . In general, if k ≥ 1 papers are cited within the sentence Si,
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the average words for each of these k papers (including P ) is given by:

AW (S, P,Qi) =
Len(S)

k
(6.3)

where Len(S) denotes the length of a sentence S and is simply computed by
counting the number of words appearing in it. Now, assume that the papers
Q1, Q2, . . . , Qn are citing paper P in the tth year after publication of P . We
define the average citeWords metric for paper P for the tth year as:

Average citeWords(P, t) =

∑n
j=1 citeWords(P,Qi)

n
(6.4)

Using Table 6.2, average citeWords value for paper P for the third year after
publication (year 2008) can be calculated as:

(citeWords(P, 6413388) + citeWords(P, 5052733))/2

To compute citeWords(P, 5052733), we see that paper 5052733 cites P in
one citation context where a total of two papers are cited. Thus

citeWords(P, 5052733) = 11
2

= 5.5,

where 11 is the length of the citation context.
Similarly, paper 6413388 cites paper P twice but in both the citation contexts,
two papers are cited. Therefore,

citeWords(P, 6413388) =
25

2
+

16

2
= 20.5

Thus, Average citeWords(P, 3) = 20.5+5.5
2

= 13.

Correlation between citation counts and citation content
features over the years

We investigate whether the average countX and average citeWords values over
the years are correlated with the number of citations a paper receives. We
reiterate that both average countX and average citeWords are normalized with
respect to the number of citations received by the paper. We divide the set
of papers in our dataset into 6 buckets based on the following criterion on the
number of citations.

Bucket 1: Top 0.1% papers – citations 389-7859
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Bucket 2: Top 0.1 - 1% papers – citations 95-389

Bucket 3: Top 1 - 5% papers – citations 29-95

Bucket 4: Top 5 - 10% papers – citations 16-29

Bucket 5: Top 10 - 25% papers – citations 6-16

Bucket 6: Rest of the papers – citations 0-6

For each of the citation buckets, we plot the temporal profile for the average
countX values, averaged for all the papers within that bucket, in Figure 6.2.
The X−axis denotes the year after publication of the paper, ranging from 0
(same year as publication) to 10 (10th year after publication). While averaging
for a citation bucket for a particular year, we consider only those papers which
have non-zero citations in that year. The minimum value of countX can be
1 for any citation edge. Interestingly, as per our hypothesis, various citation
ranges show differences in terms of the average countX values. Some important
observations from Figure 6.2 are:

1. There is an increase in the value of countX in initial years irrespective of
the citation bucket, and it further decreases continuously over the years.
A slight increase is observed for the 10th year after publication.

2. Highly cited papers are cited more number of times in a single paper.

We clearly see a correlation between the number of citations and the average
countX profiles of the papers. Further, we investigate whether the countX
values can discriminate between the 6 citation categories identified in [34].
Accordingly, we divided the set of papers into 6 categories mentioned in [34].
For readability, the six categories are described below:

(i) PeakInit: Papers whose citation count peaks within 5 years of publi-
cation followed by an exponential decay.

(ii) PeakMul: Papers having multiple peaks in different time periods of
the citation history.

(iii) PeakLate: Papers having very few citations at the beginning and then
a single peak after at least 5 years of the publication followed by an exponential
decay in citation count.

(iv) MonDec: Papers whose citation count peaks in the immediate next
year of the publication followed by a monotonic decrease in the number of
citations.

(v) MonIncr: Papers having a monotonic increase in the number of cita-
tions from the very beginning of the year of publication till the date of obser-
vation.
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Figure 6.2: Average countX: temporal profiles for six citation buckets over
the publication age.

(vi) Oth: Papers not belonging to any of the above-mentioned categories
belong to this category.
Figure 6.3 presents the temporal profile of average countX values for each of
these 6 categories. Again, we can see that the average countX values are the
highest for theMonIncr and PeakLate categories, which have been identified
as having the categories corresponding to a high number of citations in [34].
Similarly, average countX values are the lowest for the MonDec and Others,
which have been identified as the categories corresponding to the low number
of citations (see [34] for details).
We now plot the temporal profile for the average citeWords values for the six
citation buckets in Figure 6.4. Similar to average countX, while averaging for a
citation bucket for a particular year, we consider only those papers which have
a non-zero citation in that year. Average citeWords also shows a very similar
trend as that seen with the average countX values, an initial increase and then a
decreasing trend over the years. Interestingly, differences are observed between
various citation ranges with the papers having the highest citations also earning
a high number of average citeWords over the years.
We further use six citation categories to plot the temporal profiles in Figure
6.5. The trends are again very similar to those observed for the case of average
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Figure 6.3: Average countX: temporal profiles for the six citation categories
[34] over the publication age.

countX values, with the MonIncr and PeakLate categories having a higher value
of average citeWords than the other categories and MonDec category having
the lowest values.

Correlation between citation counts and citation context
features for the initial years

To motivate the importance of average countX and citeWords as features for
future citation prediction, Table 6.3 shows some specific examples of papers
having the same citation count in the first two years after publication but
different average countX and citeWords values. What we observe is that in
both the cases, among the papers having the same citation count, the paper
having a high countX (and citeWords) value in the initial two years receives a
much higher citation count in the future. Thus, the average countX feature
from the initial years of publication can serve as an important feature towards
predicting future citations.
We further study whether the average countX and average citeWords values
from the initial two years after publication can serve as discriminating features
to predict citations at a later point in time. We, therefore, divide all the papers
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Figure 6.4: Average citeWords: temporal profiles for the six citation buckets
over the first 10 years of publication age.

Table 6.3: Example paper-pairs having a similar citation count in the initial
2 years of publication but different countX values.

Paper ID
Initial
citation
count

Initial
Avg.

countX

Initial
Avg.

citeWords

Final
Citation
count

349111 4 1.75 41.75 140
25 4 1 10.58 47
1911 7 3.29 47.9 155
349954 7 1.42 16.35 38

in 3 ranges as per the average countX values ({1}, (1, 1.5] and (1.5,−)) and as
per the average citeWords ((0, 10.5], (10.5, 16.5] and (16.5,−) in the initial two
years of publication. We call these ranges as low, medium and high respectively.
We now take citation counts of the papers for the time points, corresponding to
5 and 9 years after publication. For each such time point, we create 6 different
citation buckets (top 0.1% etc.) and plot the distribution of the papers falling
into these 6 citation buckets on various countX and citeWords ranges. For
example, 5 years after publication, 75% of the papers in the lowest citation
category have an average countX value=1 (see Figure 6.6(a)). On the other
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Figure 6.5: Average citeWords: temporal profiles for the six citation cate-
gories [34] over the first 10 years of publication age.

Figure 6.6: Correlating citation count and countX buckets. (a) Correlation
at 5 years after publication. (b) Correlation at 9 years after publication.
The six citation buckets are defined in Section 6.2.2.

hand, more than 75% of the papers in the top two categories (top 0.1% and top
0.1-1%) have a countX value ≥ 1.5. The trend becomes much more prominent
for 9 years after publication (Figure 6.6(b)), with the probability of a paper
having countX ≥ 1.5 increasing with increasing citation counts.
Very similar trends are observed for the average citeWords as well (see Figure
6.7). From these figures as well as examples in Table 6.3, it is clear that
information from average countX and average citeWords in the initial years of
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Figure 6.7: Correlating citation count and citeWords buckets. (a) Correla-
tion at 5 years after publication. (b) Correlation at 9 years after publication.
The six citation buckets are defined in Section 6.2.2.

publication act as a discriminating factor for the future citation counts, such
that most of the highly cited papers have high values of average countX and
citeWords in the initial years, which is not true for the low-cited papers.

Motivated by these examples, we now use these citation context features for the
task of future citation prediction. The model is described in the next section.

6.2.3 Citation prediction model

We extend the two-stage stratified learning framework proposed in [31] with the
addition of three features. In the first stage, a query paper is classified into one
of the citation profile category using Support Vector Machine (SVM) learning
model. Further, for each category, a Support Vector Regression (SVR) model is
learned for predicting citation counts. Thus, given a query paper, we first clas-
sify it into one of the six citation profile categories. Post classification, category
based SVR is used to predict citation count. Our citation prediction model uses
features at the time of publication, along with the citation information from
the first 2 years after publication. Features from the time of publication are the
same as reported in [31]. These features can be divided into three categories:
features based on the paper content, features based on author information and
features based on venue information. We use several NLP features within paper
content features. These include n-gram diversity feature (keyword diversity) and
topic (inferred using Latent Dirichlet Allocation) diversity feature. For the sake
of completeness, we describe these features in brief below. For more details,
the reader is requested to refer to [31].
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Features based on paper content

We used five paper-centric features as proposed in [31]. Last three among these
are entropy-based features.
(a) Team-size (Team): The number of authors in a paper.
(b) Reference count (RefCount): The number of references mentioned in
the reference section of a paper.
(c) Reference diversity (RDI): RDI measures the diversity in the fields of
the referred papers. A paper citing papers of various fields has a high value of
RDI.
(d) Keyword diversity (KDI): Keyword diversity refers to diversity in the
keywords mentioned in the paper.
(e) Topic diversity (Topic): Each paper is assigned a set of probable topics
inferred from LDA. Topic diversity gives a diversity of these probable topics.

Features based on author information

The author of a publication plays an important role in its popularity. The fol-
lowing four author-centric features were used for citation prediction.
(a) Author h-index (HIndex): H-index is a standard measure of author pro-
ductivity and impact. This feature measures average h-index of the authors at
the time of publication.
(b) Author productivity (ProAuth): Author productivity refers to the count
of her publications. A more productive author will produce more. The feature
is an average of the productivity of all the co-authors of a paper.
(c) Author diversity (AuthDiv): Author diversity refers to the diversity in
the research fields of author publications. A highly diverse author of the paper
will publish in different domains. The feature is an average of all the authors
taken together.
(d) Sociality of the author (NOCA): This feature counts the number of
co-authors in all the publications of each author present in the paper.

Features based on venue information

We also use certain features based on the prestige as well as the diversity of
the venue, where the paper has been published. These features are described
in detail below.
(a) Short-term venue prestige (VenPresS): Short term venue prestige
measures the average number of citations for the papers published in a venue
during the two preceding years.
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(b) Long-term venue prestige (VenPresL): Long-term venue prestige mea-
sures the average number of citations for the papers published in a venue so
far.
(c) Venue diversity (VenDiv): This feature measures the diversity in the
research fields of the papers published in a venue.

Features after the publication year

In addition to these features, we also utilize the two features derived from the
citation context, the average countX, and average citeWords for the first two
years after publication, as well citation count received after the first two years
of publication.
In the next section, we report the experiments using our citation prediction
model.

6.2.4 Experiments

We perform experiments using the stratified learning framework for citation
prediction. We selected papers having at least 10 years of history and published
in between 1970 - 2005. We divided this dataset into training and testing
sets. For training, we consider papers published in between 1970 - 2000. For
testing purpose, we took the range as 2001 - 2005. First, we learn a stage-I
classification model using our training dataset. We also learn separate regression
models for each citation category, for each time point, for which the citation
count is to be predicted. Given a query paper, first, the classification model
is used to assign a citation category (stratum) to it (stage I). In stage II, a
regression model trained on the assigned category is used for citation count
prediction for the specified time periods. We use all the features described in
Section 6.2.3. We have used three different time points ∆t = 5, 7, and 9 for
prediction.
We evaluate our model on two baselines. The first baseline [182] (baseline
I) is similar to our model except that it does not include the classification
stage. Thus, all the features are directly used in a regression model for citation
prediction. We use Chakraborty et al. [31] as the second baseline (baseline
II). While the authors conducted experiments both with and without the initial
year of publication information, we use the citation count of first two years for
their method for a fair comparison. Thus, this baseline is very similar to our
model with the only difference being that we use two citation context features
identified in this thesis, average countX and average citeWords, for the tth year
after publication, with t = 0, 1, 2.
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Evaluation metrics

We use the following three metrics for evaluating our results. We do not use
Kullback Leibler (KL) divergence because it measures distance between two
probability distributions. In our setup, the two distributions (actual and pre-
dicted citation counts) are not probability distributions. Moreover, the chosen
metrics are the standard metrics in citation prediction works [31, 182].

1. Coefficient of determination (R2): Coefficient of determination (R2)
[28] is a number that indicates how well data fits a statistical model of
future outcome prediction. It measures the variability introduced by the
statistical model. It is defined as the proportionate reduction in uncer-
tainty, due to the inclusion of regressors. Let d be the document in test
document set DT , we calculate R2 as:

R2 =

∑
dεDT

(CTccp(d)− CT (DT ))2∑
dεDT

(CT (d)− CT (DT ))2 (6.5)

Here, CTccp(d) denotes the predicted citation count for document d.
CT (DT ) denotes the mean of observed citation counts for documents
in DT . CT (d) denotes actual citation count for document d. R2 values
range between from 0 to 1. A larger value indicates better performance.

2. Pearson correlation coefficient (ρ): Pearson correlation co-efficient
(ρ) [105] measures the degree of linear dependence between two variables.
It is defined as the covariance of the two variables divided by the product
of their standard deviations.

ρX,Y =
cov(X, Y )

σXσY
(6.6)

cov(X, Y ) = E[(X − µX)(Y − µY )] (6.7)

Here, cov(X, Y ) denotes covariance betweenX and Y , σX and σY denote
standard deviation values for X and Y respectively. Similarly, µX and
µY denote mean values for variables X and Y respectively. E represents
the expected value. ρ ranges from -1 to 1, where ρ = 1 corresponds
to a total positive correlation, 0 corresponds to no correlation, and −1
corresponds to total negative correlation. A larger value indicates better
performance.

3. Mean squared error (θ): Mean squared error (θ) measures the ex-
pected value of the squared error loss in estimation. It is a risk function
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corresponding to the expected value of the squared error loss. For n
number of observations, we define mean squared error as:

θ =

∑n
i=1 (Ŷi − Yi)

2

n
(6.8)

Here, Ŷ and Y denote the vectors of predicted and actual values respec-
tively. A smaller value indicates better performance.

Comparisons with the baseline models

Next, we compare the performance of the two baselines with our model. We
also present performance statistics for stage I (classification) and stage II (pre-
diction). Along with performance analysis, we compare categories and analyze
results.
Table 6.4 compares the performance of these baselines with our model. Columns
2-4 in Table 6.4 show the predictive performance for baseline I using three met-
rics, while columns 5-7 show the predictive performance of baseline II. Columns
8-10 show the performance of our model.
We observe that for all the three systems, performance deteriorates with the
increase in the time period for prediction, with the best performance achieved
for ∆t = 5. While baseline I performs the worst among the three models, the
R2 value of 0.56 obtained for ∆t = 5 is in itself significantly better than some
previous works. For example, Kulkarni et al. [99] achieved an R2 value of 0.2
using 328 medical articles. Baseline II performs better than baseline I for all of
the three time-periods. This performance improvement can be credited to the
stratified learning approach used in baseline II, as was established in [31]. Our
model performs better than both the baselines for all the three time-periods.
While the improvements over the first baseline are almost over 50% in terms
of R2, improvement of the order of 8-10% is achieved over baseline II as well.
Improvement in terms of θ are of the order of 20-25% over the baseline II. Since
the only difference between baseline II and our model are the average countX
and average citeWords features, this improvement can be credited to the use
of initial year information from the citation context of the paper.

Category-wise performance analysis

Since we use the six categories as strata, we further analyze the prediction results
for each of these categories. Table 6.5 presents category-wise performance
metrics (except the category Oth) values for the three time-periods. Figure 6.8
gives the scatter plots for each category for the prediction task for the three
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Table 6.4: Performance comparison between baseline I, baseline II, and our
model. Three evaluation metrics θ, R2 and ρ are used. A low value of θ and
high values of R2 and ρ represent an efficient model. Prediction is made
over three time periods – ∆t = 5, ∆t = 7 and ∆t = 9.

Baseline I Baseline II Our Model
R2 ρ θ R2 ρ θ R2 ρ θ

∆ t=5 0.56 0.59 14.56 0.78 0.76 10.45 0.84 0.79 7.86
∆ t=7 0.54 0.57 15.90 0.74 0.72 12.57 0.81 0.75 9.70
∆ t=9 0.51 0.54 17.22 0.73 0.68 14.89 0.78 0.74 12.43

time periods. X−axis denotes the actual citation count, while the Y−axis
denotes the predicted citation count.
From Table 6.5, we observe that for ∆t = 5, the performance is the best for
the PeakLate category on all the three metrics. Figure 6.8 also confirms this
observation with most of the points densely accumulated around x = y line.
For ∆t = 7, PeakLate performs the best on ρ, while MonDec and MonIncr
perform well on R2 and θ respectively. For ∆t = 9, MonIncr performs the best
among all the categories for all the three evaluation metrics. Overall, PeakLate
and MonIncr categories perform the best. This is very crucial for the citation
prediction model, as these categories correspond to the highly cited papers [31].
From Figure 6.8, we observe that for ∆t = 5, all categories show roughly the
same pattern. Majority of the papers lie below the line, which denotes that in
the initial years after publication our model slightly under-estimates the citation
counts. The only cases of over-estimation are for the PeakMul category, ∆t = 9
(majority papers above the line) and for the MonIncr category for ∆t = 7.

Table 6.5: Category-wise prediction accuracies using three metrics.

∆ t=5 ∆ t=7 ∆ t=9
R2 ρ θ R2 ρ θ R2 ρ θ

PeakInit 0.76 0.81 7.09 0.77 0.72 9.91 0.74 0.75 14.44
PeakMul 0.79 0.73 8.25 0.78 0.76 9.78 0.78 0.73 13.40
PeakLate 0.89 0.83 1.96 0.81 0.78 9.88 0.79 0.75 13.32
MonDec 0.88 0.78 12.20 0.89 0.77 9.86 0.79 0.75 13.32
MonIncr 0.79 0.79 11.51 0.80 0.76 9.22 0.79 0.79 12.61

SVM classification analysis

The first stage SVM model classifies each paper into one of the six categories.
Table 6.6 presents the confusion matrix of SVM classification. Each entry in
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Figure 6.8: Change in prediction over the time-periods for each category.
Each scatter plot shows relation between actual citation count with pre-
dicted citation count. Here, from left to right, red color represents PeakInit,
green color represents PeakMul, yellow color represents PeakLate, blue color
represents MonDec and cyan color represents MonIncr. Black color line
represents x = y line passing through origin.

the first column represents a ground truth category of the paper. Similarly, each
entry in the first row represents predicted category. We observe that around
50% of Oth category paper are wrongly classified into PeakMul. While MonDec
has the highest accuracy (0.989), more than 29% PeakInit are classified into
MonDec, which in turn decreases the accuracy for PeakInit category. As our
dataset is highly biased towards Oth category (highest % of papers), SVM
overestimates Oth category in the classification. Classification inaccuracy in
the first stage decreases prediction accuracy in the second stage, with the Oth
category playing a significant role in lowering the precision.

Paperwise analysis

Table 6.7 presents one best representative paper from each of the five categories.
For each paper, we calculate the absolute difference between actual citation
count and predicted citation count for our model and baseline II for three time
periods. As observed from Table 6.7, our model is closest to the actual values
in terms of citations at any time instance. Baseline I shows worse results than
baseline II. We, therefore, omit baseline I results due to space constraints.
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Table 6.6: SVM classification confusion matrix. Column 1 represents the
ground truth categories, column 2 represents total number of papers in
each of these categories, columns 3-8 represent the predicted categories and
column 9 presents the accuracy values for each category. Correct classi-
fication results are highlighted in bold font from column 3-8. In column
9, highlighted bold font represents both the highest and lowest accuracy
values.

No. of
papers

PeakInit PeakMul PeakLate MonDec MonIncr Oth Accuracy

PeakInit 15178 10987 12 134 3245 43 757 0.724
PeakMul 30969 6 27554 1 1 0 3407 0.889
PeakLate 8946 49 0 7298 23 0 1665 0.815
MonDec 5263 1 22 0 5207 0 55 0.989
MonIncr 4010 1 64 1 0 3005 1003 0.749
Oth 142792 13 70618 23 1 0 72138 0.494

Table 6.7: A best representative paper for each category. each paper is
mapped to its MAS paper ID. Column 3 gives the actual citation count for
the paper for 3 time points. Columns 4-6 and 7-9 give the absolute difference
between the actual citation count and the predicted citation count for the
two systems for three different time-periods. Bold font represents the best
predictions for each time period in each category. Values in parenthesis
indicate predicted citation count.

Category MAS
paper ID

Actual citation
count (∆t=5,7,9)

Baseline II Our model
∆t=5 ∆t=7 ∆t=9 ∆ t=5 ∆t=7 ∆t=9

PeakInit 73939 35,20,5 10(25) 1(21) 10(15) 5(30) 2(22) 5(10)
PeakMul 1447048 37,43,41 9(48) 9(52) 14(55) 5(42) 5(48) 3(38)
PeakLate 837621 30,33,36 8(38) 9(42) 19(55) 5(35) 5(38) 9(45)
MonDec 23419 8,6,3 1(7) 1(7) 3(6) 0(8) 1(7) 1(4)
MonIncr 9871 18,20,26 3(21) 3(23) 4(30) 2(20) 1(21) 2(24)

Feature Analysis

We now study as to how various features correlate with the actual citation
counts. Accordingly, we divide our features into 6 different sets and compute
Spearman’s correlation for the three time-periods in Table 6.8. We can see
from the table that the last three features, namely average countX, average
citeWords and 2-year citations, show a much higher correlation than the other
three feature sets. While the correlation for 2-year citation feature is slightly
higher than average countX for ∆t = 5, correlation is the highest for average
countX for ∆t = 9. Thus, average countX serves as the most important feature
for predicting the long-term citation behavior of the papers.
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Table 6.8: Average Spearman’s rank correlation of each feature category
(column 1) with the actual citation count without categorization for ∆
t=5,7 and 9 years after publication.

Feature category ∆ t=5 ∆ t=7 ∆ t=9
Author centric 0.387 0.342 0.317
Venue centric 0.343 0.309 0.285
Paper centric 0.429 0.417 0.392

Average countX 0.569 0.543 0.521
Average citeWords 0.512 0.499 0.481
2 year citation 0.571 0.543 0.502

Table 6.9: Comparing related works in citation prediction: column 1
presents the title of the paper, column 2 presents the size of the dataset used
in the paper, column 3 lists year range of test papers, column 4 presents the
time periods used for prediction, column 5 lists the method/model used for
prediction and column 6 presents the R2 values reported in the paper for a
time period, comparable across different methods. Papers are arranged in
the increasing order of R2 values.

Title of paper Dataset
size

Year
range

Time
period(s)

Method R2

(time
period)

Prediction of citation counts for
clinical articles at two years using
data available within three weeks
of publication: retrospective co-
hort study [114]

1274 2005 3.5 Decision
Trees

0.14(3.5)

Characteristics Associated with
Citation Rate of the Medical Lit-
erature [99]

328 1999 - 2000 5 Linear
Regression

0.2(5)

Journal prestige, publication bias,
and other characteristics associ-
ated with citation of published
studies in peer-reviewed journals
[117]

204 1991 2 Multiple
Regression

0.60(2)

Towards a Stratified Learning Ap-
proach to Predict Future Citation
Counts [31]

1,549,317
2001-2005 1,2,3,4,5 SVR 0.71(5)
1996 - 2000 1,2,3,4,5 SVR 0.74(5)

Citation Count Prediction: Learn-
ing to Estimate Future Citations
for Literature [183]

1,558,499 1960 - 2011 5 CART 0.752(5)

The role of citation context in pre-
dicting long-term citation profiles:
an experimental study based on a
massive bibliographic text dataset
[our model]

1,359,338 2001-2005 5,7,9 SVR 0.84(5)
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Comparison with past works

The experimental results clearly confirm that the proposed method for citation
prediction outperforms the other baselines for various time-periods. Further,
we wanted to put this work in perspective of the previous related works for
this problem. Table 6.9 lists five other works and compares them to the size
of the dataset used for the study, year-ranges of the test papers, the method
used by the papers, as well a time period for which the R2 values have been
reported. Our dataset size is comparable to the other datasets reported in the
literature. Also, we achieve a better R2 value on this massive dataset than the
ones reported earlier in the literature. Our prediction time period (∆t = 9) is
the maximum among all these works.

6.3 Impact of early citers on long-term
scientific impact

6.3.1 Early (non-)influential citers

The term early citations refers to citations accumulated immediately after the
publication. In the literature, although, there seems to be no general definition
of ‘early’, the majority of the works kept it within ∼ 2 years after publication [2].
Multiple previous works assert that early citation count helps in better predic-
tion of the long-term scientific impact (LTSI) [2, 23, 31]. Although these
approaches are interesting, they fail to capture the existence of different types
of early citations leading to more complex influence patterns on LTSI.
Given a candidate paper P published in the year T , we are interested in the
citation information generated within δ year(s) after publication, i.e., within
the time interval [T, T + δ]. For example, for δ = 2, if an article is pub-
lished in the year 2000, we look into the citation information generated till
2002. Early citation count ECCδ(P ) refers to the total number of citations
received by the paper P from other articles within δ years after publication.
Note, ECCδ(P ) quantitatively measures the early popularity of the paper P .
However, ECCδ(P ) fails to capture the inherent nature of the individual early
citations; for example, there exists no distinction between:

• originators (authors, journals etc.) of early citations.

• good (substantiating) and bad (criticizing) citations.

• self and non-self citations.
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To incorporate some of the above distinctive characteristics in ECCδ(P ) and
to better understand the inherent nature of the individual citations, we present
the following three definitions:
Early citers (ECδ(P )): ECδ(P ) represents the set of authors that cite paper
P within δ years after its publication. Figure 6.9 shows schematic representation
of ECδ(P ) on a temporal scale. Here, ECδ(P ) consists of all authors that cite
paper P within δ year after its publication. Further, we divide this set into two
subsets – i) influential and ii) non-influential early citers.

Figure 6.9: Schematic representation of early citers on a temporal scale.
Early citers consist of all authors that cite paper P within δ year(s) after
its publication. The set of early citers is divided into two subsets, namely,
a) influential and b) non-influential. Influential early citers are represented
in purple color (online) whereas non-influential early citers are represented
in green color.

Influential early citers (IECδ(P )): This is a subset of ECδ(P ) in which
each author either has a high publication count or a high citation count or
both at the time of the citation. Note that, in the current work, we consider
top ∼ 5% authors as influential early citers, both in terms of publication and
citation counts. Empirically (from dataset described in Section 6.3.2), we find
that top ∼ 5% consists of authors who have authored at least 21 publications
or acquired at least 250 citations or both. In Figure 6.9, for paper P , IECδ(P )
are represented in the purple color.
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Non-influential early citers (NECδ(P )): Early citers that are not influential
constitutes the set of non-influential citers, i.e.

NECδ(P ) = ECδ(P ) \ IECδ(P ) (6.9)

As described before, NECδ consists of the remaining ∼ 95% of the authors in
ECδ(P ). In Figure 6.9, NECδ(P ) authors are represented in green color. To
study the impact of influential and non-influential EC on citations gained at a
later point in time, we define long-term scientific impact as:
Long-term scientific impact (LTSI∆(P )): Given a paper P , it represents
cumulative citation count of P after ∆ years of its publication. Section 6.3.3
demonstrates the effect of influential and non-influential EC on LTSI. Next,
we describe the dataset we employ for the large-scale experimental study and
for the extended prediction framework.

6.3.2 Dataset description

In this work also, we utilize the same two open source computer science datasets,
used in the previous study (see Section 6.2) both crawled from the Microsoft
Academic Search. We filter the datasets by removing papers with incomplete
information about the title, the abstract, the venue, the author(s), etc. Since
the current study entirely focuses on early citers, we only include papers that
consist of at least one citation within δ(= 2) years after publication. We term
this dataset as filtered dataset. Table 6.10 outlines various statistics for both
the datasets. For the rest of this chapter, we conduct all our experiments on
the filtered dataset unless otherwise stated.

Table 6.10: General information about the datasets. We combine the two
separately crawled datasets – (a) the bibliographic dataset and (b) the cita-
tion context dataset into a single compiled dataset. We create the filtered
dataset after removing incomplete information from the compiled dataset.
Note, the filtered dataset consists of articles that have at least one citation
within δ(= 2) years after publication.

Compiled
dataset

Filtered
dataset

No. of publications 2,473,147 949,336
No. of authors 1,186,412 535,543
Year range 1859–2012 1970–2010
No. of citation contexts 26,037,804 11,532,780
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6.3.3 Empirical study

In this section, we plan to empirically investigate how the early citers impact the
LTSI of a paper. The section begins by introducing three properties of early
citers, namely, the publication count, the citation count and the co-authorship
distance. We describe each property in detail and present correlation (using
Pearson Correlation) statistics along with representative examples.
General Setting: Given a candidate paper P , we construct a set of early citing
papers CP that cite P within δ year(s) after publication. For the current study,
we keep δ = 2. From the definition presented in Section 6.3.1, ECδ(P ) consists
of all authors that have written papers present in CP . Next, for each paper
c ∈ CP , we select one representative author among all co-authors based on
different selection criterion. More specifically, each selection criterion refers to
one distinguishing property of EC. Further, we construct a representative author
subset RECδ(P ) from the selected authors and present correlation statistics of
this newly constructed subset with LTSI. Note that RECδ(P ) ⊆ ECδ(P ).
Next, we define the three key properties of EC that assist in distinguishing early
citations.

Publication count

Publication count of an early citer refers to the number of articles written by her
before citing the paper P . High publication count denotes high productivity of
an early citer. For each paper c ∈ CP , we select the author with the maximum
publication count. The authors so selected constitute the set RECδ(P ). Note
that in our experiments, authors with minimum, average and median publication
counts have not shown significant correlations. Further, we aggregate early
citers’ publication counts (PCP ) by averaging over the set of selected authors
RECδ(P ). For each paper P present in our dataset, we compute PCP and
P ’s cumulative citation count at five later time periods after publication, ∆t =
5, 8, 10, 12, 15. We utilize the definitions of influential and non-influential early
citers described in Section 6.3.1, i.e., a paper P is cited by a set of influential
early citers, if PCP >= 21. Therefore, we split the entire paper set into two
subsets: i) papers cited by non-influential EC (PCP < 21), and ii) papers
cited by influential EC (PCP >= 21). Figure 6.10 compares these two subsets
correlating PC values with cumulative citation counts at five later time periods.
Observations: Figure 6.10 presents few interesting observations. Papers with
lower value of PC(< 21) exhibit positive correlation. However, as ∆t pro-
gresses, this positive correlation starts diminishing. Surprisingly, papers with
higher values of PC(>= 21), show negative correlation and this effect be-
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Figure 6.10: Correlation between EC publication count and cumulative ci-
tation count at five later time periods after publication, ∆t = 5, 8, 10, 12, 15.
Papers with lower value of PC(< 21) exhibit positive correlation diminish-
ing over the time. Papers with high value of PC(>= 21) show an opposite
trend. The overall separation decreases over time.

comes more profound as ∆t progresses. Thus, the overall separation between
the two subsets decreases over time.
This study illustrates the fact that influential EC negatively affect the long-term
citations. A plausible explanation could be that in general, researchers tend to
cite works written by influential authors. Therefore, once an influential author
cites an article, researchers tend to cite the influential author’s paper, instead
of the original paper. The attention from the original paper moves to the paper
written by the influential citer in the very beginning of the life-span of the
original paper. Therefore, instead of flourishing, the long-term citation count
of the original paper gets negatively affected. This phenomenon of attention
relaying from the less popular article to the more popular article is described
as attention stealing [176]. In case of non-influential EC, the citation count
of the candidate paper exhibits a positive correlation with PC. However, with
the passage of time, this positive correlation diminishes due to ageing effect
associated with paper’s life span [168]. In case of influential EC, same ageing
effect leads to increase in the negative correlation over the passage of time.
Table 6.11 shows some specific examples of papers having the same early cita-
tion count in the first two years after publication but different PC values. In
both cases, the paper having a low PC value receives a much higher citation
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count in the future.

Table 6.11: Example paper-pairs having a similar early citation count in
the initial two years of publication but different PC values.

Paper ID Early citation count Early citer PC Later citation count
726084 13 18.9 79
140790 13 36.5 34
1663998 8 19.17 109
150167 8 65 38

Citation count

Citation count of an early citer refers to the number of citations received by
her before citing paper P . High citation count denotes higher popularity of the
early citer. Again, for each paper c ∈ CP , we select the author with maximum
citation count. Here again, the authors so selected constitute the set RECδ(P ).
Further, we aggregate early citers’ citation counts (CCP ) by averaging over the
set of selected authors RECδ(P ). For each paper P present in our dataset,
we compute CCP and P ’s cumulative citation count at five later time periods
after publication, ∆t = 5, 8, 10, 12, 15. Similar to previous section, we again
split the entire paper set into two subsets: i) papers cited by non-influential
EC (CCP < 250), and ii) papers cited by influential EC (CCP >= 250).
Figure 6.11 compares these two subsets by correlating CC values with the
cumulative citation counts at five later time periods.
Observations: Figure 6.11 presents similar observations as reported in Fig-
ure 6.10. Papers with a lower value of CC(< 250) exhibit positive correlation
diminishing over the time. Papers with a high value of CC(>= 250) show an
exactly opposite trend. Here also, the overall separation decreases with time.
The results again confirm the existence of attention stealing, i.e., a popular
citer steals the attention from a newly arrived paper by citing it. The tempo-
ral increase and decrease in correlation values of influential and non-influential
early citers respectively relate to the ageing effect as discussed in the previous
section.
Table 6.12 shows some specific examples of papers having the same early ci-
tation count in the first two years after publication but different CC values.
Similar to publication count, here also, we observe that in both the cases, the
paper having a low CC value receives a much higher citation count in the future.
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Figure 6.11: Correlation between EC citation count and cumulative citation
count at five later time periods after publication, ∆t = 5, 8, 10, 12, 15. Pa-
pers with lower value of CC(< 250) exhibit positive correlation diminishing
over the time. Papers with high value of CC(>= 250) show an opposite
trend. The overall separation decreases over time.

Table 6.12: Example paper-pairs having a similar early citation count in
the initial two years of publication but different CC values.

Paper ID Early citation count Early citer CC Later citation count
2025205 4 124.75 51
287142 4 456 13
269672 18 74.45 61
1695635 18 623.17 29

Co-authorship distance

We construct a collaboration graph G(V,E) to understand the effect of the
co-authorship distance between EC and the authors of candidate paper P on
LTSI. Here, V is the set of vertices representing authors and an edge e ∈ E
between two authors denotes that they have co-authored at least one article.
We define the co-authorship distance (CA) between two authors as the shortest
distance between the two in the co-authorship network. Again, for each paper
c ∈ CP , we select the author with the lowest CA from the authors of candidate
paper P . The authors so selected constitutes the set RECδ(P ) here. Note that
in our experiments, authors with highest, average and median co-authorship
distance have not shown better correlations. We aggregate the co-authorship
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distance (CAP ) by averaging over the set of selected authors RECδ(P ). To
understand the effect of co-authorship distance on LTSI, we divide CA into
three buckets:
• Bucket 1: 0 ≤ CA < 1
• Bucket 2: 1 ≤ CA < 2
• Bucket 3: CA ≥ 2

Note, CA = 0 represents self-citations, i.e., one of the early citer is the author
of the candidate paper P . The authors at CA = 1 are the co-authors of the
authors in the candidate paper. Hence, Bucket 1 mainly consists of authors
of the candidate paper itself. Bucket 2 mainly consists of the immediate
co-authors of the author set of the candidate paper while Bucket 3 mainly
consists of co-authors of co-authors (distant neighbours) of the author set of
the candidate paper.

Figure 6.12: Correlation between EC’s publication count and cumulative
citation count for three co-authorship buckets at four later time periods
after publication, ∆t = 5, 8, 10, 12. For each time period, first three bars
represent correlation for non-influential EC (PCP < 21) whereas the next
three bars represent correlation for influential EC (PCP >= 21). Influential
immediate co-authors (Bucket 2) seem to badly affect the citation of the
candidate paper P in the long term.

For each bucket, we present correlation statistics of EC’s publication count and
citation count with LTSI. Figure 6.12 illustrates, for each bucket, correlation
between EC’s publication count and cumulative citation count at four later time
periods after publication, ∆t = 5, 8, 10, 12. For each time period, the first three
bars represent correlation for non-influential EC (PCP < 21) whereas the next
three bars represent correlation for influential EC (PCP >= 21).
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Observations: For each CA bucket, we observe similar trends as before, in-
fluential EC negatively affect the LTSI while non-influential EC affect pos-
itively. The most striking observation from this experiment is the effect of
immediate co-authors (Bucket 2) on LTSI. Even though both influential or
non-influential immediate co-authors maximally correlate with LTSI, influen-
tial immediate co-authors negatively affect the citation of the candidate paper
P in the long term due to intensified attention stealing effect.

Figure 6.13: Correlation between EC’s citation count and cumulative cita-
tion count for three co-authorship buckets at four later time periods after
publication, ∆t = 5, 8, 10, 12. For each time period, first three bars rep-
resent correlation for non-influential EC (CCP < 250) whereas next three
bars represent correlation for influential EC (CCP >= 250). Influential im-
mediate co-authors (bucket 2) badly affect the attention of candidate paper
P in long term.

Similarly, Figure 6.13 illustrates correlation between EC’s citation count and
cumulative citation count at four later time periods after publication. For each
time period, the first three bars represent correlation for non-influential EC
(CCP < 250) whereas the next three bars represent correlation for influential
EC (CCP >= 250).

Observations: In this case, the observations are very similar to the previous
case. Motivated by these empirical observations, we incorporate the EC proper-
ties in a well-recognized citation prediction framework as described in the next
section.
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6.3.4 Citation prediction framework

As an intuitive use case, we extend the long-term citation prediction frame-
work proposed by [182] by including the three EC properties discussed in the
previous sections. In addition, we also include two citation context-based fea-
tures proposed in the previous section. Given a candidate paper, we predict
its cumulative citation count at five different time-points (∆t = 3, 5, 7, 9, 11)
after publication. Our citation prediction framework employs a set of features
that can be computed at the time of publication plus a set of features that
can be extracted from the citation information generated within two years after
publication (Section 6.3.4). We train four predictive models for comparative
study, namely, linear regression, Gaussian process regression, classification and
regression trees and support vector regression. We discuss each model briefly
in Section 6.3.4. We compare our proposed prediction framework with three
baselines in Section 6.3.4 using evaluation metrics outlined in Section 6.3.4.

Feature definition

As described before, we utilize features available at the time of publication
along with the features available within two years after publication. The feature
set consists of 20 different features, out of which 14 features are available at
the publication time, while the other six features utilize citation information
generated within two years after publication. Features4 available at the time
of publication are the same as reported in [182]. Similarly, early citation count
and citation context features available after publication are same as reported in
previous section. The entire feature set can be divided into seven categories: (i)
features based on early citer properties, (ii) early citation count, (iii) features
based on paper information, (iv) features based on author information, (v)
features based on venue information, (vi) paper recency, and (vii) features
based on citation context. Similar to Section 6.2.3, here also, paper information
includes two NLP features (i) n-gram diversity (keyword diversity), and (ii) topic
(inferred using Latent Dirichlet Allocation) diversity. Given a candidate paper
P published in the year T , we compute the following features:

• Early citer centric features: Early citer centric features are computed
within two years after the publication. Given a set of early citing papers
CP , we compute three features:

1. Publication count (ECPC): For each early citing article, we select
the author with the maximum publication count. ECPC is computed

4Some of these features might appear correlated; however, we use all of these in order
to have a faithful reproduction of the model proposed in [182].
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by averaging this maximum publication count over all the early citing
articles.

2. Citation count (ECCC): Here, for each early citing article, we
select the author with the maximum citation count. ECCC is then
computed by averaging this maximum citation count over all the
early citing articles.

3. Co-authorship distance (ECCA): Here, we select the author
with the minimum co-authorship distance from the authors of the
candidate paper P . ECCA is computed by averaging this minimum
co-authorship distance over all the early citing articles.

• Early citation count (ECC): This feature simply includes the citation
counts of paper P generated within the first two years after publication.

• Paper centric features:

1. Novelty (PCN): Novelty measures the similarity between paper
P and the other publications in the dataset. It is computed by
measuring Kullback-Leibler Divergence of an article against all its
references. We assume that low similarity means high novelty and
more novel article should attract more citations.

2. Topic Rank (PCTR): Topics are inferred from the paper title and
abstract using unsupervised LDA. Each paper is assigned a topic
and further each topic is ranked based on the average citations it
has received.

3. Diversity (PCD): Diversity measures the breadth of an article in-
ferred from its topic distribution. We measure the diversity of an
article by computing the entropy of the paper’s topic distribution
(see [182] for more details).

• Author centric features:

1. H-Index (ACHI): H-index attempts to measure both the produc-
tivity and the impact of the published work of a researcher [81]. Yan
et al. [182] observed a high positive correlation between h-index and
average citation counts of publications.

2. Author rank (ACAR): Author rank determines the “fame" of an
author. Each author is assigned an author rank based on her current
citation count. High-rank authors have high citation counts.

3. Past influence of authors (ACPI): We measure the past influ-
ence of authors in two ways: previous (1) maximum citation counts,
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and (2) total citation counts. Previous maximum citation count of
an author represents the citation count of author’s most popular
publication. Previous total citation count represents the sum of the
citation counts of all the author’s publications.

4. Productivity (ACP): The more papers an author has published,
the higher average citation counts she could expect. Productivity
refers to the total number of articles published by an author.

5. Sociality (ACS): A widely connected author is more likely to be
cited by her wide variety of co-authors. Sociality, thus, can be
computed from the co-authorship network graph employing a for-
mulation in a recursive form as in the PageRank algorithm.

6. Authority (ACA): A widely cited paper indicates peer acknowl-
edgments, and hence indicates the ‘authority’ of its authors. We
compute authority of paper in citation network graph using the sim-
ilar recursive algorithm as proposed for the sociality feature. The
paper authority then is transmitted to all its authors.

7. Versatility (ACV): Versatility represents the topical breadth of an
author. We measure the versatility of an author by computing the
entropy of the author’s topic distribution. Higher versatility implies
large volumes of the audience from various research fields.

• Venue centric features:

1. Venue rank (VCVR): The reputation of a venue relates to the
volume of citations it receives. Similar to author rank, we rank
venues based on its current citation count. High-rank venues have
high citation counts.

2. Venue centrality (VCVC): We create a venue connectivity graph
G(V,E) where V denotes the set of venues and the edges e ∈ E
denote the citing-cited relationships between venues. The in-degrees
measure how many times a venue is cited by papers from other
venues. Finally, venue centrality can be measured using a PageRank
algorithm.

3. Past influence of venues (VCPI): Past influence of a venue is
computed similar to the past influence of authors. As in the case
of authors, we measure the past influence of venues in two ways:
previous (1) maximum influence of venues, and (2) total influence
of venues.
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• Recency (PR): Recency describes the temporal proximity of an arti-
cle. It measures the age of a published article. The longer an article is
published, the more citations it may receive.

• Citation context centric features:

1. Average countX (CCAC): A high value of countX implies that
the cited paper is referred to multiple times by the citer paper in
different sections of its text. Thus, cited paper might be quite
relevant for citing paper. In the previous section, we argued that
highly cited papers are cited more number of times in a single text.

2. Average citeWords (CCAW): Similar to countX, a high value of
citeWords implies that the cited paper has been discussed in more
details by the citer paper and therefore, cited paper might be quite
relevant for the citing paper.

Predictive models

In this section, we describe four regression models. Each model is trained on
features described in the previous section. All models are trained using available
implementations from the Weka toolkit [73].

• Linear regression (LR): Linear regression is an approach to model the
relationship between the dependent variable Y and one or more indepen-
dent (explanatory) variables X. It attempts to model this relationship by
fitting a linear equation to observed data. A linear regression line has an
equation of the form:

Y = wXT + b, (6.10)

where Y is the dependent variable, XT is a vector of explanatory vari-
ables, w is a vector of weights (parameters) of the linear regression and
b represents the error. In the current work, we consider publication’s pre-
dicted citation count to be the dependent variable and features (described
in Section 6.3.4) are considered to be the explanatory variables.

• Gaussian process regression (GPR): Due to the complex nature of
the long-term citation impact estimation, it might well be the case that
the dependent variable is a non-linear function of all the features used
to represent the data. Gaussian processes [143] provide formulations
by which the prior information about the regression parameters can be
easily encoded. This property makes them convenient for our problem
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formulation. Given a vector of input features X, the predicted citation
counts C(d) of the document d is:

C(d) = K(X,XT )[K(XT , XT ) + σ2I]−1C(dT ), (6.11)

where XT is a matrix of feature vectors of the training set, K is a kernel
function, I is the identity matrix, σ is the noise parameter and C(dT ) is
the vector of citation counts of the training set. Note, in our experiments,
we keep σ = 0.5.

• Classification and regression trees (CART): Classification and re-
gression trees [24] are obtained by recursively partitioning the training
data space and fitting a simple prediction model within each partition.
As a result, the partitioning can be represented graphically as a decision
tree. Regression trees are built for dependent variables (citation count in
the present context) that take continuous or ordered discrete values, with
prediction error typically measured by the squared difference between the
observed and predicted values.

• Support vector regression (SVR): Support vector regression [157]
is derived from statistical learning theory and they work by solving a
constrained quadratic problem where the convex objective function for
minimization is given by the combination of a loss function with a regu-
larization term. Support vector regression is the most common application
form of SVMs. In the current study, we employ LIBSVM5 with default
parameter settings. The best results were obtained for the linear kernel.

Baselines

• Baseline I: The first baseline [182] is similar to our model except that
it does not include any information generated after the publication. It
includes paper, author and venue centric features along with recency.

• Baseline II: The second baseline is similar to Baseline I plus one more
feature – early citation counts. Chakraborty et al. [31] showed that in-
clusion of early citation counts enhances prediction accuracies mostly for
the higher values of ∆t.

• Baseline III: In the third baseline, we include citation context centric
features introduced in the previous section to Baseline II. Thus, baseline
III consists of paper, author, venue and citation context centric features
along with recency and early citation count.

5http://www.csie.ntu.edu.tw/∼cjlin/libsvm/
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Evaluation metrics

We employ two evaluation metrics to compare our model with baselines (de-
scribed in Section 6.3.4). The metrics are Coefficient of determination (R2)
and Pearson correlation coefficient (ρ) (refer to Section 6.2.4 for detailed de-
scription).

6.3.5 Prediction analysis

Experimental setup

Our experimental setup bears a close resemblance to [182]. We randomly select
10,000 training sample papers published in and before the year 1995. We opted
for a small sample size because of associated computational complexities. Since
our prediction framework utilizes information generated within first two years
after publication, we perform prediction task from 1998 – 2010. The reason
behind choosing 1998 as the start year is to counter information leakage due to
the training papers published at 1995 since prediction framework utilizes early
citation data till 1997 for papers published in the year 1995. To evaluate, we
select three random sets of 10,000 sample papers (published between 1998 –
2010). Note that for ∆t = 11, we can only consider papers published between
1998 – 1999, for ∆t = 9, we can consider papers published between 1998 –
2001 and so on. Given a candidate paper, we predict its cumulative citation
count at five different time-points after publication, ∆t = 3, 5, 7, 9, 11. For
example, given a candidate paper P published in 1998, ∆t = 3 represents
prediction at 2001, ∆t = 5 represents prediction at 2003 and so on. In the next
section, we present a comprehensive analysis of our proposed framework.

Prediction results

1. Comparison between predictive models: To begin with, we incorpo-
rate all features described in Section 6.3.4 for the prediction task (includes
early citer centric, paper-centric, author-centric, venue centric, citation
context centric features plus early citation count and recency features).
However, we observe marginal performance gain in all models after re-
moving the citation context-based features. Therefore, it was decided
that the best framework (hereafter ‘our model ’) for this prediction task
would consist of all features except the citation context-based features.
Table 6.13 compares the four predictive models (LR, GPR, CART and
SVR) at five different time-points after publication, ∆t = 3, 5, 7, 9, 11.
Overall, SVR achieves the best performance, while GPR seems to have
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the worst performance. As expected, in all the models, the performance
diminishes as ∆t increases.

2. Comparison with the baseline models: Next, we compare the per-
formance of the three baselines (described in Section 6.3.4) with our
model. Due to high-performance gain discussed in the previous section,
we use SVR for modeling the three baselines as well as our model. Ta-
ble 6.14 compares Baseline I, Baseline II and Baseline III with our model.
Prediction is made over five time periods, ∆t = 3, 5, 7, 9, 11. Each cell
represents mean and standard deviation (in parenthesis) of the metric
values for the three random samples. Even though, as highlighted, our
model by far outperforms all three baselines at each time period for both
metrics, it slightly under estimates LTSI (see Figure 6.14).

3. Effect of different early time periods: So far, we have performed
experiments for a fixed early time period (δ = 2). In this section, we
experiment with δ = 1, 2, 3 for estimating the early citer features6. Ta-
ble 6.15 compares the prediction results for the SVR model using three
different values of δ. The table presents an interesting finding that in-
creasing the value of δ does not always improve prediction accuracy. R2

values at δ = 2 always outperform δ = 1, 3 in the later time points.

Table 6.13: Performance comparison among the four predictive models –
LR, GPR, CART and SVR. Two evaluation metrics R2and ρ are used.
A high value of R2and ρ represent an efficient prediction. Prediction is
performed over five time periods, ∆t = 3, 5, 7, 9, 11.

Model ∆T = 3 ∆T = 5 ∆T = 7 ∆T = 9 ∆T = 11
ρ R2 ρ R2 ρ R2 ρ R2 ρ R2

LR 0.95 0.82 0.91 0.79 0.84 0.74 0.81 0.68 0.75 0.61
GPR 0.83 0.57 0.80 0.55 0.71 0.48 0.66 0.47 0.64 0.30
CART 0.95 0.73 0.87 0.68 0.79 0.62 0.75 0.55 0.63 0.43
SVR 0.97 0.84 0.91 0.82 0.88 0.76 0.82 0.69 0.76 0.65

Feature analysis

We now study how the various features correlate with the actual citation counts.
As described in Section 6.3.4, our model is trained on 18 features out of 20

6Note that the early citation count however is obtained using δ = 2 as suggested in
the literature.
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Table 6.14: Performance comparison among baseline I, baseline II, baseline
III and our model. Two evaluation metrics ρ and R2 are used. A high value
of both metrics represent an efficient model. Prediction is made over five
time periods, ∆t = 3, 5, 7, 9, 11. Each cell represents mean and standard
deviation (in parenthesis) of the metric values for three random samples.
Bold numbers in the table indicate the best performing model for a given
time period. Our model by far outperforms all three baselines at each time
period for both metrics.

∆t
Baseline I Baseline II

ρ R2 ρ R2

3 0.793 (0.003) 0.654 (0.019) 0.856 (0.021) 0.724 (0.001)
5 0.745 (0.021) 0.644 (0.006) 0.792 (0.007) 0.699 (0.012)
7 0.691 (0.016) 0.593 (0.003) 0.752 (0.004) 0.688 (0.019)
9 0.543 (0.008) 0.588 (0.015) 0.646 (0.009) 0.639 (0.002)
11 0.591 (0.015) 0.544 (0.002) 0.633 (0.010) 0.542 (0.006)

∆t
Baseline III Our model

ρ R2 ρ R2

3 0.895 (0.012) 0.769 (0.017) 0.971 (0.002) 0.841 (0.001)
5 0.814 (0.019) 0.788 (0.001) 0.915 (0.015) 0.819 (0.019)
7 0.754 (0.023) 0.690 (0.026) 0.877 (0.007) 0.765 (0.013)
9 0.684 (0.002) 0.643 (0.001) 0.819 (0.003) 0.687 (0.021)
11 0.675 (0.008) 0.582 (0.021) 0.758 (0.005) 0.651 (0.016)

Table 6.15: Performance of the model assuming different values of δ. Pre-
diction is made over three early time periods, δ = 1, 2, 3, and at three later
time points, ∆t = 5, 7, 9. Best results are obtained at δ = 2. The added
information does not always improve prediction accuracy.

∆T
δ = 1 δ = 2 δ = 3
ρ R2 ρ R2 ρ R2

5 0.882 0.68 0.915 0.82 0.911 0.76
7 0.841 0.61 0.877 0.77 0.884 0.72
9 0.765 0.58 0.819 0.69 0.822 0.64

features (described in Section 6.3.4); therefore, we perform feature analysis for
18 features. We train SVR with individual features and rank them based on
Pearson’s correlation values of each feature with the actual citation count for
∆t = 3 years after publication in descending order. Table 6.16 reports ranked
list of features at ∆t = 3. We can observe from the table that the first six
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Figure 6.14: Change in prediction results over five time-periods. Scatter
plots showing correlation between SVR predictions with real citation count
values at ∆t = 3, 5, 7, 9, 11. The black color line represents y = x line
passing through origin. Our model performs best for ∆T = 3 with majority
of the points on y = x line. It performs worst for ∆T = 11 with high
divergence from the line. Our model under estimates LTSI as majority of
the points lie below the line. However, this prediction is considerably better
than all the other baselines.

in the rank list consists of all the three EC features, indicating the importance
of the EC features. As expected, early citation count is the most distinctive
feature.

Table 6.16: Ranked list of features based on Pearson’s correlation values be-
tween the predicted citation count and the actual citation count for ∆t = 3
years after publication. Each SVR model is trained with individual feature.

1 ECC 6 ECCA 11 ACAR 16 PCN
2 ECCC 7 ACHI 12 ACP 17 ACV
3 ECPC 8 VCVR 13 PCTR 18 VCVC
4 VCPI 9 ACS 14 PR
5 ACPI 10 PCD 15 ACA

Figure 6.15 presents cross-correlation between features. Diagonal entries
have maximum positive correlation (self) values = 1. Overall, features seem to
be not much correlated with each other except a few cases. Interestingly, we
observe that the EC features negatively correlate with the early citation count
feature, the two being very distinct sources of information. Thus, including the
EC features enhances the prediction performance significantly over and above
the early citation count feature.
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Figure 6.15: Cross correlation between features: Red color represents highly
correlated features (=1). Blue represents uncorrelated to weakly negatively
correlated features. Diagonal entries have maximum correlation (self) val-
ues = 1.

6.4 Online portal

We have also built an online portal to showcase the different results from
our current work. Given a query paper present in our dataset, the portal
displays different statistics related to the paper; in particular, each query
result is accompanied by the statistics of the EC properties and other pa-
per details. In addition, the portal also presents with a visualization com-
paring the actual and the predicted citation count of the paper. The cur-
rent system is hosted on our research group server and can be accessed at
http://www.cnergres.iitkgp.ac.in/earlyciters/.

6.5 Summary of the chapter

We present an interesting applications of curated scholarly knowledge. Next,
we list specific contributions of this chapter:

http://www.cnergres.iitkgp.ac.in/earlyciters/
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Figure 6.16: Snapshot of online portal. For input candidate paper, the
portal presents visualization of prediction results along with EC statistics.
It compares SVR predictions with real values at ∆t = 3, 5, 7, 9, 11 years
after publication.

1. We have used a massive dataset of citation contexts to show that the
features extracted from the citation contexts of the papers, in the im-
mediate years after publication, play a vital role for the task of future
citation prediction.

2. We introduced two new features, average countX, and average citeWords,
and feature analysis showed that these citation context features are highly
correlated with the actual citation counts, specifically for the long-range
citation prediction.

3. We have also been successfully able to provide empirical evidence that
early citers (EC) play a significant role in determining the long-term sci-
entific impact.

4. We empirically show that early citations might not be always beneficial;
in particular early citations from influential EC negatively correlates with
the long-term scientific impact of a paper. We have provided further
evidence that the negative impact is more intense when EC is closer to
the authors of the candidate article in the collaboration network.

To the best of our knowledge, this is the first work that attempts to use citation
context-based features in the citation prediction problem. We use a massive
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dataset of more than 26 million citation contexts from computer science re-
search articles toward this goal.



CHAPTER7
Conclusion and Future Work

In this chapter, we summarize important contributions of this thesis and finally
wrap it up pointing to certain future research directions which this thesis has
opened up.

7.1 Summary of Contribution

7.1.1 Knowledge extraction from scholarly articles

We develop OCR++, an open-source knowledge extraction frameworks for sci-
entific articles. It extracts metadata, structural and bibliographic information
from PDF research articles. We next summarize the contributions below –

• OCR++ performs a variety of information extraction tasks from scholarly
articles including extraction of metadata (title, author names, affiliation,
and e-mail) structure (section headings and body text, table and figure
headings, URLs and footnotes) and bibliography (citation instances and
references).

• We show that hand-written rules and heuristics produce better results
than previously proposed machine learning models.

• Despite OCR errors and the great difference in the publishing formats,
OCR++ outperforms the state-of-the-art systems with high margin, both
in terms of accuracy (around 50% improvement) and processing time
(around 52% improvement).

127
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• A user experience study conducted with the help of 30 researchers reveals
that the researchers found this system to be very helpful.

• OCR++ is online with the entire source code publicly available.

7.1.2 Mining performance comparisons to rank
scholarly articles

We also develop another scholarly framework that robustly mines experimen-
tal performance from papers embedded within comparative tables. The key
contributions are –

• We show that freely accessible academic search systems fail miserably at
automatic leaderboard discovery and at finding state-of-the-art papers.

• To remedy this, we introduce performance tournament graphs that en-
code information about performance comparisons between scientific pa-
pers.

• We develop a robust, flexible, and domain-independent framework to
extract these tournaments from tables with citations and performance
numbers.

• We present a number of ways to aggregate the tournament edges and a
number of ways to score and rank nodes on the basis of this incomplete
and noisy information.

• The resulting scholarly search system is very simple to implement, but
beats freely accessible search services by a large margin.

7.1.3 Modeling scientific growth through relay-linking
phenomenon

Idealized network evolution models that explain entrenchment of prominence are
abundant, but the only ones that model aging depend on post-hoc distribution-
fitting (data collapse) and externality (fitness) parameters. We present the
first plausible network-driven models for obsolescence in the context of research
paper citations, based on a natural notion of relay-linking. The key contributions
are –

1. We propose several measurements on evolving networks that constitute a
temporal bucket signature summarizing the coexistence of entrenchment
and obsolescence.



7.2. Future direction 129

2. We show how graph structure can be utilized to predict where incoming
citations to aging papers are likely to be redistributed.

3. We propose several novel and stringent tests for temporal fidelity of evolv-
ing, aging network models. Traditional aging models do not pass these
tests well, but our relay-linking models do.

4. As an interesting application, we show that estimated turnover values
negatively correlate with impact factor (IF10) for the four conference
subsets we chose.

7.1.4 Estimating long-term scientific impact

As a final objective of this thesis, we leverage curated scientific knowledge to
improve scientific impact prediction. In this regard, we contribute by utilizing
early crowd-sourced textual and citers information to predict long term scientific
impact of a paper. We utilize early information generated soon after publica-
tion to improve supervised machine learning frameworks for long-term scientific
impact. The contributions can be summarized as:

1. We create a massive dataset consisting of more than 26 million citation
contexts from computer science articles.

2. We present empirical evidence of a high correlation between two tex-
tual features from the citation contexts and three different characteristic
properties of early citers with long-term citation counts of the paper.

3. We show that influential early citers have a negative impact while non-
influential EC have a positive impact on a paper’s long-term scientific
impact. The negative impact is more intense when EC is closer to the
authors of the candidate article in the collaboration network.

4. We then append these features along with various other features avail-
able at the time of publication in an earlier framework based on stratified
learning [31] improving the prediction accuracy of state-of-the-art base-
lines with high margin.

7.2 Future direction

Here, we discuss some new research issues that have been opened up by this
thesis.
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7.2.1 Information extraction from scholarly articles

Some important future directions from this study are summarized as follows –

• One can aim to extend current frameworks by extracting information
present in figures and tables. Figures and tables present concise statistics
about dataset and results.

• OCR++ can be extended to extract and parse reference strings. Each
reference string consists of set of fields such as author names, title, year
of publication, venue name, volume, pages, organization, etc.

• Another possible extension would be to support the functionality for non-
English articles.

• Another possibility is to develop a similar framework for patent articles.

7.2.2 Performance based scholarly ranking

Some important future directions from this study are summarized as follows –

• Performance information present in PDF articles can be extracted by
utilizing several textual and image processing techniques.

• One can also aim to connect the relevant parts of the paper with com-
parative tables and charts.

• Another possible challenging extension can be performance extraction
from textual paragraphs.

7.2.3 Modeling scientific growth through relay-linking
phenomenon

Some important studies that can be taken up in future as a consequence of this
work are summarized below –

1. The general applicability of relay-linking models may be investigated by
extending it in the context of other citation networks, for example, legal
precedence citation networks which consist of citation links between court
cases, patent citation networks which consist of citation links between
granted patents, etc.
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2. Our proposed relay models do not consider area/author information which
might be relevant in deciding the relay citation. An immediate future
goal could be to introduce area/author-specific bias during link formation
stages.

3. Future extensions could possibly lead to a formal analysis of properties of
relay-linking or tractable variations. This would include deriving a relay-
linking based mathematical formulation that governs the degree distribu-
tion.

4. Another possibility is to model inter-field citation evolution process.

7.2.4 Estimating long-term scientific impact

Some important future directions from this study are summarized as follows –

1. More features such as distribution of POS tags, sentiment score, etc.,
based on the textual analysis of citation contexts can be investigated.

2. Another possibility is to explore hedge count as a potential discriminat-
ing feature in the current study. Hedge identification is well researched
problem in Biomedical domain [109, 65, 3].

3. The citation context may be further analyzed to obtain additional in-
sights and properties such as common phrases, popular sentiment words,
method and task identification within citation text, etc.

4. Another future direction would be to extend the current work to other
scientific research fields.

5. Similar study can be performed in patent datasets to understand the effect
of early citers on the overall innovation potential.

6. Another extension can lead to mathematical modeling of early citers’
influence.

Many of the interesting problems in text can be solved by just looking into
the data and inferring distinctive patterns, style, format, etc. We do not need
complex ML models for every problem. We find extremely less applicability of
AI in scientometry, thus, there is good scope in future. We should focus on
better ranking schemes by looking into the textual data of research paper and
not just by mere citation counts or publication age.
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